Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(5): 1000-1012.e19, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28823555

RESUMO

The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.


Assuntos
Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Memória Episódica , Vias Neurais , Animais , Corticosterona/metabolismo , Córtex Entorrinal/citologia , Expressão Gênica , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética
2.
PLoS Biol ; 20(1): e3001507, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041655

RESUMO

Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.


Assuntos
Edição de Genes , Técnicas de Genotipagem/métodos , Software , Animais , Técnicas de Introdução de Genes , Genoma , Genótipo , Mutação INDEL , Aprendizado de Máquina , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mutação , Sequenciamento por Nanoporos , Análise de Sequência de DNA
3.
Am J Pathol ; 193(8): 1081-1100, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516458

RESUMO

Decrease of pancreatic ß cells leads to diabetes. In an inducible cAMP early suppressor (ICER-Iγ) transgenic mouse model of severe type 2 diabetes with reduced insulin production and depleted ß cells, supplementation with high concentrations of 17ß-estradiol (E2) markedly enhances ß-cell proliferation and normalizes glucose levels. The current study explored the underlying mechanisms leading to a dynamic increase of ß cells and pathologic changes in diabetic mice exposed to E2. Gene expression profiling of pancreatic islets of 6-month-old ICER-transgenic mice recovering from diabetes due to elevated E2 levels identified growth regulation by estrogen in breast cancer 1 (Greb1) as a gene significantly up-regulated during the recovery phase. To substantiate this, ß-cell-specific Greb1-deficient mice were generated, and Greb1 was shown to be essential for recovery of depleted ß cells in diabetic mice. Graft growth and glucose lowering were observed in 50 islets with increased Greb1 expression transplanted adjacent to E2 pellets beneath the kidney capsule of streptozotocin-induced diabetic mice. Greb1 expression due to a drastic increase in exogenous or endogenous E2 was transient and closely correlated with changes in E2-related and some cell cycle-related genes. These findings provide new insights into in vivo proliferation of deficient ß cells and suggest the possibility of new therapeutic approaches targeting pancreatic ß cells that could revolutionize the concept of diabetes treatment, which has been considered difficult to cure completely.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Estradiol/farmacologia , Proliferação de Células , Camundongos Transgênicos , Glucose
4.
Mamm Genome ; 33(1): 181-191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34532769

RESUMO

The RIKEN BioResource Research Center (BRC) was established in 2001 as a comprehensive biological resource center in Japan. The Experimental Animal Division, one of the BRC infrastructure divisions, has been designated as the core facility for mouse resources within the National BioResource Project (NBRP) by the Japanese government since FY2002. Our activities regarding the collection, preservation, quality control, and distribution of mouse resources have been supported by the research community, including evaluations and guidance on advancing social and research needs, as well as the operations and future direction of the BRC. Expenditure for collection, preservation, and quality-control operations of the BRC, as a national core facility, has been funded by the government, while distribution has been separately funded by users' reimbursement fees. We have collected over 9000 strains created mainly by Japanese scientists including Nobel laureates and researchers in cutting-edge fields and distributed mice to 7000 scientists with 1500 organizations in Japan and globally. Our users have published 1000 outstanding papers and a few dozen patents. The collected mouse resources are accessible via the RIKEN BRC website, with a revised version of the searchable online catalog. In addition, to enhance the visibility of useful strains, we have launched web corners designated as the "Mouse of the Month" and "Today's Tool and Model." Only high-demand strains are maintained in live colonies, while other strains are cryopreserved as embryos or sperm to achieve cost-effective management. Since 2007, the RIKEN BRC has built up a back-up facility in the RIKEN Harima branch to protect the deposited strains from disasters. Our mice have been distributed with high quality through the application of strict microbial and genetic quality control programs that cover a globally accepted pathogens list and mutated alleles generated by various methods. Added value features, such as information about users' publications, standardized phenotyping data, and genome sequences of the collected strains, are important to facilitate the use of our resources. We have added and disseminated such information in collaboration with the NBRP Information Center and the NBRP Genome Information Upgrading Program. The RIKEN BRC has participated in international mouse resource networks such as the International Mouse Strain Resource, International Mouse Phenotyping Consortium, and Asian Mouse Mutagenesis and Resource Association to facilitate the worldwide use of high-quality mouse resources, and as a consequence it contributes to reproducible life science studies and innovation around the globe.


Assuntos
Programas Governamentais , Centros de Informação , Camundongos , Animais , Genoma , Japão , Camundongos/genética
5.
Mamm Genome ; 33(1): 192-202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34482437

RESUMO

The Asian Mouse Mutagenesis Resource Association (AMMRA) is a non-profit organization consisting of major resource and research institutions with rodent expertise from within the Asia Pacific region. For more than a decade, aiming to support biomedical research and stimulate international collaboration, AMMRA has always been a friendly and passionate ally of Asian and Australian member institutions devoted to sharing knowledge, exchanging resources, and promoting biomedical research. AMMRA is also missioned to global connection by working closely with the consortiums such as the International Mouse Phenotyping Consortium and the International Mouse Strain Resource. This review discusses the emergence of AMMRA and outlines its many roles and responsibilities in promoting, assisting, enriching research, and ultimately enhancing global life science research quality.


Assuntos
Animais de Laboratório , Pesquisa Biomédica , Animais , Ásia , Austrália , Camundongos , Mutagênese
6.
Mamm Genome ; 33(1): 31-43, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34782917

RESUMO

Laboratory mouse strains have mosaic genomes derived from at least three major subspecies that are distributed in Eurasia. Here, we describe genomic variations in ten inbred strains: Mus musculus musculus-derived BLG2/Ms, NJL/Ms, CHD/Ms, SWN/Ms, and KJR/Ms; M. m. domesticus-derived PGN2/Ms and BFM/Ms; M. m. castaneus-derived HMI/Ms; and JF1/Ms and MSM/Ms, which were derived from a hybrid between M. m. musculus and M. m. castaneus. These strains were established by Prof. Moriwaki in the 1980s and are collectively named the "Mishima Battery". These strains show large phenotypic variations in body size and in many physiological traits. We resequenced the genomes of the Mishima Battery strains and performed a comparative genomic analysis with dbSNP data. More than 81 million nucleotide coordinates were identified as variant sites due to the large genetic distances among the mouse subspecies; 8,062,070 new SNP sites were detected in this study, and these may underlie the large phenotypic diversity observed in the Mishima Battery. The new information was collected in a reconstructed genome database, termed MoG+ that includes new application software and viewers. MoG+ intuitively visualizes nucleotide variants in genes and intergenic regions, and amino acid substitutions across the three mouse subspecies. We report statistical data from the resequencing and comparative genomic analyses and newly collected phenotype data of the Mishima Battery, and provide a brief description of the functions of MoG+, which provides a searchable and unique data resource of the numerous genomic variations across the three mouse subspecies. The data in MoG+ will be invaluable for research into phenotype-genotype links in diverse mouse strains.


Assuntos
Bases de Dados Genéticas , Genoma , Camundongos Endogâmicos , Animais , Pesquisa Biomédica , Genômica , Camundongos , Camundongos Endogâmicos/genética , Nucleotídeos
7.
Genes Cells ; 26(4): 240-245, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33540482

RESUMO

Site-specific conditional inactivation technologies using Cre-loxP or Flp-FRT systems are becoming increasingly important for the elucidation of gene function and disease mechanism in vivo. A large number of gene knockout mouse models carrying complex conditional alleles have been generated by global community efforts and made available for biomedical researchers. The structures of conditional alleles in these mice are becoming increasingly complex and sophisticated, and so the validation of the genetic quality of these alleles is likewise becoming a laborious task for individual researchers. To ensure the reproducibility of conditional experiments, the researcher should confirm that loxP or FRT is integrated at the correct positions in the genome prior to start of the experiments. We report the successful design of universal PCR primers specific to loxP and FRT for the quick validation of conditional floxed and Flrted alleles. The primer set consists of forward and reverse primers complimentary to the loxP or FRT sequences with partial modifications at the 5' end containing 6-base restriction endonuclease recognition sites. The universal primer set was tested to detect genomic intervals between a pair of cis-integrated loxP or FRT and was useful for quickly validating various floxed or Flrted alleles in conditional mice.


Assuntos
Alelos , Animais , Sequência de Bases , Primers do DNA/metabolismo , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
8.
Transgenic Res ; 31(4-5): 413-430, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751794

RESUMO

Laboratory animal research involving mice, requires consideration of many factors to be controlled. Genetic quality is one factor that is often overlooked but is essential for the generation of reproducible experimental results. Whether experimental research involves inbred mice, spontaneous mutant, or genetically modified strains, exercising genetic quality through careful breeding, good recordkeeping, and prudent quality control steps such as validation of the presence of mutations and verification of the genetic background, will help ensure that experimental results are accurate and that reference controls are representative for the particular experiment. In this review paper, we will discuss various techniques used for the generation of genetically altered mice, and the different aspects to be considered regarding genetic quality, including inbred strains and substrains used, quality check controls during and after genetic manipulation and breeding. We also provide examples for when to use the different techniques and considerations on genetic quality checks. Further, we emphasize on the importance of establishing an in-house genetic quality program.


Assuntos
Camundongos Endogâmicos , Animais , Camundongos , Mutação , Reprodutibilidade dos Testes
9.
Methods ; 191: 23-31, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32334080

RESUMO

Genetically modified mouse models are essential for in vivo investigation of gene function and human disease research. Targeted mutations can be introduced into mouse embryos using genome editing technology such as CRISPR-Cas. Although mice with small indel mutations can be produced, the production of mice carrying large deletions or gene fragment knock-in alleles remains inefficient. We introduced the nuclear localisation property of Cdt1 protein into the CRISPR-Cas system for efficient production of genetically engineered mice. Mouse Cdt1-connected Cas9 (Cas9-mC) was present in the nucleus of HEK293T cells and mouse embryos. Cas9-mC induced a bi-allelic full deletion of Dmd, GC-rich fragment knock-in, and floxed allele knock-in with high efficiency compared to standard Cas9. These results indicate that Cas9-mC is a useful tool for producing mouse models carrying targeted mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Camundongos , Zigoto
10.
Reprod Med Biol ; 21(1): e12472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765371

RESUMO

Purpose: Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods: By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results: We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions: Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.

11.
Biol Reprod ; 104(1): 234-243, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990726

RESUMO

The genus Mus consists of many species with high genetic diversity. However, only one species, Mus musculus (the laboratory mouse), is common in biomedical research. The unavailability of assisted reproductive technologies (ARTs) for other Mus species might be a major reason for their limited use in laboratories. Here, we devised ARTs for Mus spretus (the Algerian mouse), a commonly used wild-derived Mus species. We found that in vitro production of M. spretus embryos was difficult because of low efficacies of superovulation with equine chorionic gonadotropin or anti-inhibin serum (AIS) (5-8 oocytes per female) and a low fertilization rate following in vitro fertilization (IVF; 15.2%). The primary cause of this was the hardening of the zona pellucida but not the sperm's fertilizing ability, as revealed by reciprocal IVF with laboratory mice. The largest number of embryos (16 per female) were obtained when females were injected with AIS followed by human chorionic gonadotropin and estradiol injections 24 h later, and then by natural mating. These in vivo-derived 2-cell embryos could be vitrified/warmed with a high survival rate (94%) using an ethylene glycol-based solution. Importantly, more than 60% of such embryos developed into healthy offspring following interspecific embryo transfer into (C57BL/6 × C3H) F1 female mice. Thus, we have devised practical ARTs for Mus spretus mice, enabling efficient production of embryos and animals, with safe laboratory preservation of their strains. In addition, we have demonstrated that interspecific embryo transfer is possible in murine rodents.


Assuntos
Transferência Embrionária/veterinária , Técnicas de Reprodução Assistida/veterinária , Superovulação , Animais , Criopreservação/veterinária , Feminino , Masculino , Camundongos
12.
Biol Reprod ; 104(4): 875-886, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33511393

RESUMO

Male penis is required to become erect during copulation. In the upper (dorsal) part of penis, the erectile tissue termed corpus cavernosum (CC) plays fundamental roles for erection by regulating the inner blood flow. When blood flows into the CC, the microvascular complex termed sinusoidal space is reported to expand during erection. A novel in vitro explant system to analyze the dynamic erectile responses during contraction/relaxation is established. The current data show regulatory contraction/relaxation processes induced by phenylephrine (PE) and nitric oxide (NO) donor mimicking dynamic erectile responses by in vitro CC explants. Two-photon excitation microscopy (TPEM) observation shows the synchronous movement of sinusoidal space and the entire CC. By taking advantages of the CC explant system, tadalafil (Cialis) was shown to increase sinusoidal relaxation. Histopathological changes have been generally reported associating with erection in several pathological conditions. Various stressed statuses have been suggested to occur in the erectile responses by previous studies. The current CC explant model enables to analyze such conditions through directly manipulating CC in the repeated contraction/relaxation processes. Expression of oxidative stress marker and contraction-related genes, Hypoxia-inducible factor 1-alpha (Hif1a), glutathione peroxidase 1 (Gpx1), Ras homolog family member A (RhoA), and Rho-associated protein kinase (Rock), was significantly increased in such repeated contraction/relaxation. Altogether, it is suggested that the system is valuable for analyzing structural changes and physiological responses to several regulators in the field of penile medicine.


Assuntos
Ereção Peniana/fisiologia , Pênis/citologia , Animais , Células Cultivadas , Disfunção Erétil/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microscopia/métodos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Pênis/fisiologia , Pênis/ultraestrutura
13.
J Reprod Dev ; 65(1): 1-5, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30518723

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based genome editing technology has enabled manipulation of the embryonic genome. Unbiased whole genome sequencing comparing parents to progeny has revealed that the rate of Cas9-induced mutagenesis in mouse embryos is indistinguishable from the background rate of de novo mutation. However, establishing the best practice to confirm on-target alleles of interest remains a challenge. We believe that improvement in editing strategies and screening methods for founder mice will contribute to the generation of quality-controlled animals, thereby ensuring reproducibility of results in animal studies and advancing the 3Rs (replacement, reduction, and refinement).


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Embrião de Mamíferos , Edição de Genes/métodos , Mutagênese , Animais , Animais Geneticamente Modificados/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
14.
Genesis ; 54(7): 389-97, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27124574

RESUMO

Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells differentiate into spermatozoa. To better understand the molecular mechanisms of the process, the Cre/loxP system has been widely utilized for conditional gene knockout in mice. In this study, we generated a transgenic mouse line that expresses Cre recombinase under the control of the 2.5 kbp of the Prolactin family 3, subfamily b, member 1 (Prl3b1) gene promoter (Prl3b1-cre). Prl3b1 was initially reported to code for placental lactogen 2 (PL-2) protein in placenta along with increased expression toward the end of pregnancy. PL-2 was found to be expressed in germ cells in the testis, especially in spermatocytes. To analyze the specificity and efficiency of Cre recombinase activity in Prl3b1-cre mice, the mice were mated with reporter R26GRR mice, which express GFP ubiquitously before and tdsRed exclusively after Cre recombination. The systemic examination of Prl3b1-cre;R26GRR mice revealed that tdsRed-positive cells were detected only in the testis and epididymis. Fluorescence imaging of Prl3b1-cre;R26GRR testes suggested that Cre-mediated recombination took place in the germ cells with approximately 74% efficiency determined by in vitro fertilization. In conclusion, our results suggest that the Prl3b1-cre mice line provides a unique resource to understand testicular germ-cell development. genesis 54:389-397, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/genética , Proteínas Imediatamente Precoces/biossíntese , Proteínas Tirosina Fosfatases/biossíntese , Espermatogênese/genética , Espermatozoides/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Lactogênio Placentário/genética , Proteínas Tirosina Fosfatases/genética , Espermatozoides/crescimento & desenvolvimento , Células-Tronco/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
15.
Neurobiol Dis ; 96: 271-283, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693510

RESUMO

We identified a novel spontaneous mutant mouse showing motor symptoms that are similar to those of the dystonia musculorum (dt) mouse. The observations suggested that the mutant mice inherited the mild dt phenotype as an autosomal recessive trait. Linkage analysis showed that the causative gene was located near D1Mit373 and D1Mit410 microsatellite markers on chromosome 1, which are close to the dystonin (Dst) gene locus. To investigate whether Dst is the causative gene of the novel mutant phenotype, we crossed the mutant with Dst gene trap (DstGt) mice. Compound heterozygotes showed a typical dt phenotype with sensory degeneration and progressive motor symptoms. DNA sequencing analysis identified a nonsense mutation within the spectrin repeats of the plakin domain. The novel mutant allele was named dt23Rbrc. Motor abnormalities in homozygous dt23Rbrc/dt23Rbrc mice are not as severe as homozygous DstGt/DstGt mice. Histological analyses showed abnormal neurofilament (NF) accumulation in the nervous system of homozygous dt23Rbrc/dt23Rbrc mice, which is characteristic of the dt phenotype. We mapped the distribution of abnormal NF-accumulated neurons in the brain and found that they were located specifically in the brainstem, spinal cord, and in regions such as the vestibular nucleus, reticular nucleus, and red nucleus, which are implicated in posture and motor coordination pathways. The quantification of abnormal NF accumulation in the cytoplasm and spheroids (axons) of neurons showed that abnormal NF immunoreactivity was lower in homozygous dt23Rbrc/dt23Rbrc mice than in homozygous DstGt/DstGt mice. Therefore, we have identified a novel hypomorphic allele of dt, which causes histological abnormalities in the central nervous system that may account for the abnormal motor phenotype. This novel spontaneously occurring mutant may become a good model of hereditary sensory and autonomic neuropathy type 6, which is caused by mutations in the human DST gene.


Assuntos
Distúrbios Distônicos/complicações , Distúrbios Distônicos/genética , Distonina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Transtornos Heredodegenerativos do Sistema Nervoso/etiologia , Repetições de Microssatélites/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Cromossomos Humanos Par 1/genética , Distúrbios Distônicos/patologia , Distonina/metabolismo , Potencial Evocado Motor/genética , Comportamento Exploratório/fisiologia , Genótipo , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Atividade Motora/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , Reflexo de Endireitamento/genética , Percepção Espacial/fisiologia
16.
Mamm Genome ; 26(7-8): 331-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26013919

RESUMO

The National Institute of Genetics Mouse Genome database (NIG_MoG; http://molossinus.lab.nig.ac.jp/msmdb/) primarily comprises the whole-genome sequence data of two inbred mouse strains, MSM/Ms and JF1/Ms. These strains were established at NIG and originated from the Japanese subspecies Mus musculus molossinus. NIG_MoG provides visualized genome polymorphism information, browsing single-nucleotide polymorphisms and short insertions and deletions in the genomes of MSM/Ms and JF1/Ms with respect to C57BL/6J (whose genome is predominantly derived from the West European subspecies M. m. domesticus). This allows users, especially wet-lab biologists, to intuitively recognize intersubspecific genome divergence in these mouse strains using visual data. The database also supports the in silico screening of bacterial artificial chromosome (BAC) clones that contain genomic DNA from MSM/Ms and the standard classical laboratory strain C57BL/6N. NIG_MoG is thus a valuable navigator for exploring mouse genome polymorphisms and BAC clones that are useful for studies of gene function and regulation based on intersubspecific genome divergence.


Assuntos
Bases de Dados Genéticas , Genoma , Genótipo , Mutação INDEL , Polimorfismo de Nucleotídeo Único , Software , Animais , Cromossomos Artificiais Bacterianos/química , Células Clonais , Camundongos , Camundongos Endogâmicos , Fenótipo , Especificidade da Espécie
17.
Behav Brain Funct ; 10: 45, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25487992

RESUMO

BACKGROUND: Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene for psychiatric disorders, including schizophrenia, bipolar disorder and major depression. Several previous studies reported that mice with N-ethyl-N-nitrosourea (ENU)-induced L100P mutation in Disc1 showed some schizophrenia-related behavioral phenotypes. This line originally carried several thousands of ENU-induced point mutations in the C57BL/6 J strain and single nucleotide polymorphisms (SNPs) from the DBA/2 J inbred strain. METHODS: To investigate the effect of Disc1 L100P, background mutations and SNPs on phenotypic characterization, we performed behavioral analyses to better understand phenotypes of Disc1 L100P mice and comprehensive genetic analyses using whole-exome resequencing and SNP panels to map ENU-induced mutations and strain-specific SNPs, respectively. RESULTS: We found no differences in spontaneous or methamphetamine-induced locomotor activity, sociability or social novelty preference among Disc1 L100P/L100P, L100P/+ mutants and wild-type littermates. Whole-exome resequencing of the original G1 mouse identified 117 ENU-induced variants, including Disc1 L100P per se. Two females and three males from the congenic L100P strain after backcrossing to C57BL/6 J were deposited to RIKEN BioResource Center in 2008. We genotyped them with DBA/2 J × C57BL/6 J SNPs and found a number of the checked SNPs still remained. CONCLUSION: These results suggest that causal attribution of the discrepancy in behavioral phenotypes to the Disc1 L100P mutant mouse line existing among different research groups needs to be cautiously investigated in further study by taking into account the effect(s) of other ENU-induced mutations and/or SNPs from DBA/2 J.


Assuntos
Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Modelos Animais de Doenças , Exoma/genética , Feminino , Relações Interpessoais , Masculino , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Psicologia do Esquizofrênico
18.
Zookeys ; 1200: 27-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736700

RESUMO

In the present paper, the existence and location of the type series of the Japanese dancing mouse or waltzer, Muswagneri variety rotans Droogleever Fortuyn, 1912, are established, and a lectotype is designated. Available type specimens are measured, and some morphological parameters, sex, and general condition of the specimens are recorded. A literature survey was conducted, and an attempt is made to clarify the position of M.wagneri variety rotans in the taxonomy of Mus. A genetic analysis suggests that the type series of the Japanese dancing mouse represent a crossbred, or derivation of a crossbred, between the original Japanese dancing mouse of Musmusculusmolossinus Temminck 1844 origin and European fancy or laboratory mice of Musmusculusdomesticus Schwarz & Schwarz, 1943 origin. Much of their genome was replaced and occupied by Musmusculusdomesticus type genome, probably through extensive breeding with European mice.

19.
Exp Anim ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447983

RESUMO

Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus, PWK; M. musculuscastaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.

20.
Nat Commun ; 15(1): 5574, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956430

RESUMO

The biomedical research community addresses reproducibility challenges in animal studies through standardized nomenclature, improved experimental design, transparent reporting, data sharing, and centralized repositories. The ARRIVE guidelines outline documentation standards for laboratory animals in experiments, but genetic information is often incomplete. To remedy this, we propose the Laboratory Animal Genetic Reporting (LAG-R) framework. LAG-R aims to document animals' genetic makeup in scientific publications, providing essential details for replication and appropriate model use. While verifying complete genetic compositions may be impractical, better reporting and validation efforts enhance reliability of research. LAG-R standardization will bolster reproducibility, peer review, and overall scientific rigor.


Assuntos
Animais de Laboratório , Guias como Assunto , Animais , Animais de Laboratório/genética , Reprodutibilidade dos Testes , Projetos de Pesquisa , Experimentação Animal/normas , Pesquisa Biomédica/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA