Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(20): 11378-11383, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33644979

RESUMO

The photoactivatable chemically induced dimerization (photo-CID) technique for tag-fused proteins is one of the most promising methods for regulating subcellular protein translocations and protein-protein interactions. However, light-induced covalent protein dimerization in living cells has yet to be established, despite its various advantages. Herein, we developed a photoactivatable covalent protein-labeling technology by applying a caged ligand to the BL-tag system, a covalent protein labeling system that uses mutant ß-lactamase. We further developed CBHD, a caged protein dimerizer, using caged BL-tag and HaloTag ligands, and achieved light-induced protein translocation from the cytoplasm to subcellular regions. In addition, this covalent photo-CID system enabled quick protein translocation to a laser-illuminated microregion. These results indicate that the covalent photo-CID system will expand the scope of CID applications in the optical manipulation of cellular functions.


Assuntos
Proteínas/química , Humanos , Estrutura Molecular , Fenômenos Ópticos , Processos Fotoquímicos , Ligação Proteica , Multimerização Proteica , Transporte Proteico
2.
J Am Chem Soc ; 139(48): 17397-17404, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29119782

RESUMO

Single-molecule imaging (SMI) has been widely utilized to investigate biomolecular dynamics and protein-protein interactions in living cells. However, multicolor SMI of intracellular proteins is challenging because of high background signals and other limitations of current fluorescence labeling approaches. To achieve reproducible intracellular SMI, a labeling probe ensuring both efficient membrane permeability and minimal non-specific binding to cell components is essential. We developed near-infrared fluorescent probes for protein labeling that specifically bind to a mutant ß-lactamase tag. By structural fine-tuning of cell permeability and minimized non-specific binding, SiRcB4 enabled multicolor SMI in combination with a HaloTag-based red-fluorescent probe. Upon addition of both chemical probes at sub-nanomolar concentrations, single-molecule imaging revealed the dynamics of TLR4 and its adaptor protein, TIRAP, which are involved in the innate immune system. Statistical analysis of the quantitative properties and time-lapse changes in dynamics revealed a protein-protein interaction in response to ligand stimulation.


Assuntos
Cor , Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Sondas Moleculares/química , Proteínas/análise , Proteínas/química , Imagem Individual de Molécula/métodos , Corantes Fluorescentes/análise , Ligantes , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/química , Sondas Moleculares/análise , Ligação Proteica , Receptores de Interleucina-1/análise , Receptores de Interleucina-1/química , Coloração e Rotulagem , Receptor 4 Toll-Like/análise , Receptor 4 Toll-Like/química , beta-Lactamases/análise , beta-Lactamases/química , beta-Lactamases/genética
3.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888964

RESUMO

The ß-secretase BACE1 is a central drug target for Alzheimer's disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, non-human primates and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for a safer prevention of Alzheimer's disease.

4.
Org Biomol Chem ; 11(4): 563-8, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23060072

RESUMO

The design and synthesis of molecular probes competent for pH signaling within or beyond a certain range is a complicated matter. Herein a new mechanism for ''OFF-ON-OFF'' absorbance and fluorescence intensities vs. pH behaviour is described. The probe design is based on the connection of carboxylic acid derivatized benzoxazole and 7-hydroxycoumarin/iminocoumarin parts. The protonation/deprotonation of the carboxylic acid (-COOH), N atom of benzoxazole ring and hydroxy part of the coumarin ring have been used for this mechanistic study. We have designed the molecule in such a fashion that deprotonation of the hydroxy part takes place at a lower pK(a) compared to deprotonation of the -COOH. The dual ''OFF-ON-OFF'' properties of our probes depend on the C-C bond between the two different heterocyclic parts. Quantum mechanical calculations showed that the particular 'C-C' bond has an additional π-character. The twisting around this bond in different forms is responsible for such an ''OFF-ON-OFF'' property. This mechanism is new in fluorescence alteration processes. The delocalization of charge from one heterocyclic part to the other heterocyclic part in the mono- and dianionic forms controls the ''OFF-ON-OFF'' properties. The role of the carboxylic acid group was examined using an acetyl substituted derivative. One of our probes was successfully applied in live cell imaging studies in media at different pH.


Assuntos
Ácidos Carboxílicos/química , Corantes Fluorescentes/química , Absorção , Benzoxazóis/química , Ácidos Carboxílicos/síntese química , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Imagem Molecular , Fenóis/química , Espectrometria de Fluorescência , Umbeliferonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA