Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352782

RESUMO

Phosphorus is critical to humans on many fronts, yet we do not have a mechanistic understanding of some of its most basic transformations and reactions─namely the oligomerization of white phosphorus to red. With heat or under ultraviolet (UV) exposure, it has been experimentally demonstrated that white phosphorus dissociates into diphosphorus units which readily form red phosphorus. However, the mechanism of this process is unknown. The ab initio nanoreactor approach was used to explore the potential energy surface of phosphorus clusters. Density functional theory and metadynamics simulations were used to characterize potential reaction pathways. A mechanism for oligomerization is proposed to take place via diphosphorus additions at π-bonds and weak σ-bonds through three membered ring intermediates. Downhill paths through P6 and P8 clusters eventually result in P10 clusters that can oligomerize into red phosphorus chains. The initial, rate limiting step for this process has an energy barrier of 24.2 kcal/mol.

2.
J Med Chem ; 61(16): 7034-7042, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29870665

RESUMO

After the inhibition of acetylcholinesterase (AChE) by organophosphorus (OP) nerve agents, a dealkylation reaction of the phosphylated serine, referred to as aging, can occur. When aged, known reactivators of OP-inhibited AChE are no longer effective. Realkylation of aged AChE may provide a route to reversing aging. We designed and synthesized a library of quinone methide precursors (QMPs) as proposed realkylators of aged AChE. Our lead compound (C8) from an in vitro screen successfully resurrected 32.7 and 20.4% of the activity of methylphosphonate-aged and isopropyl phosphate-aged electric-eel AChE, respectively, after 4 days. C8 displays properties of both resurrection (recovery from the aged to the native state) and reactivation (recovery from the inhibited to the native state). Resurrection of methylphosphonate-aged AChE by C8 was significantly pH-dependent, recovering 21% of activity at 4 mM and pH 9 after only 1 day. C8 is also effective against isopropyl phosphate-aged human AChE.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Agentes Neurotóxicos/farmacologia , Organofosfatos/farmacologia , Inibidores da Colinesterase/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Agentes Neurotóxicos/química , Organofosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA