Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 326-342, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38345835

RESUMO

Photoreactivation enzyme that repairs cyclobutane pyrimidine dimer (CPD) induced by ultraviolet-B radiation, commonly called CPD photolyase (PHR) is essential for plants living under sunlight. Rice (Oryza sativa) PHR (OsPHR) is a unique triple-targeting protein. The signal sequences required for its translocation to the nucleus or mitochondria are located in the C-terminal region but have yet to be identified for chloroplasts. Here, we identified sequences located in the N-terminal region, including the serine-phosphorylation site at position 7 of OsPHR, and found that OsPHR is transported/localized to chloroplasts via a vesicle transport system under the control of serine-phosphorylation. However, the sequence identified in this study is only conserved in some Poaceae species, and in many other plants, PHR is not localized to the chloroplasts. Therefore, we reasoned that Poaceae species need the ability to repair CPD in the chloroplast genome to survive under sunlight and have uniquely acquired this mechanism for PHR chloroplast translocation.


Assuntos
Cloroplastos , Desoxirribodipirimidina Fotoliase , Oryza , Raios Ultravioleta , Cloroplastos/metabolismo , Desoxirribodipirimidina Fotoliase/metabolismo , Desoxirribodipirimidina Fotoliase/genética , Oryza/genética , Oryza/enzimologia , Oryza/efeitos da radiação , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dímeros de Pirimidina/metabolismo , Poaceae/genética , Poaceae/enzimologia , Poaceae/efeitos da radiação , Poaceae/metabolismo , Sequência de Aminoácidos , Transporte Proteico
2.
Plant Cell ; 33(4): 1361-1380, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793856

RESUMO

Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.


Assuntos
Alumínio/toxicidade , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Caseína Quinase II/metabolismo , Fosfatos/metabolismo , Alumínio/farmacocinética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caseína Quinase II/genética , Peptídeos e Proteínas de Sinalização Intercelular , Fosfatos/farmacologia , Fosforilação , Células Vegetais/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Mol Biol ; 103(3): 321-340, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32277429

RESUMO

Plants live in constantly changing and often unfavorable or stressful environments. Environmental changes induce biotic and abiotic stress, which, in turn, may cause genomic DNA damage. Hence, plants simultaneously suffer abiotic/biotic stress and DNA damage. However, little information is available on the signaling crosstalk that occurs between DNA damage and abiotic/biotic stresses. Arabidopsis thaliana SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) is a pivotal transcription factor that regulates thousands of genes in response to DNA double-strand break (DSB), and we recently reported that SOG1 has a role in immune responses. In the present study, the effects of SOG1 overexpression on the DNA damage and immune responses were examined. Results found that SOG1 overexpression enhances the regulation of numerous downstream genes. Relative to the wild type plants, then, DNA damage responses were observed to be strongly induced. SOG1 overexpression also upregulates chitin (a major components of fungal cell walls) responsive genes in the presence of DSBs, implying that pathogen defense response is activated by DNA damage via SOG1. Further, SOG1 overexpression enhances fungal resistance. These results suggest that SOG1 regulates crosstalk between DNA damage response and the immune response and that plants have evolved a sophisticated defense network to contend with environmental stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dano ao DNA/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Apoptose/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas , Regulação da Expressão Gênica de Plantas/imunologia , Folhas de Planta/citologia , Ligação Proteica , Estresse Fisiológico , Fatores de Transcrição/genética
4.
Plant Cell ; 29(12): 3255-3268, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29208704

RESUMO

The Arabidopsis thaliana transcription factor SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) regulates hundreds of genes in response to DNA damage, and this results in the activation of cell cycle arrest, DNA repair, endoreduplication, and programmed cell death. However, it is not clear how this single transcription factor regulates each of these pathways. We previously reported that phosphorylation of five Ser-Gln (SQ) motifs in the C-terminal region of SOG1 are required to activate downstream pathways. In this study, we introduced Ser-to-Ala (AQ) substitutions in these five SQ motifs to progressively eliminate them and then we examined the effects on DNA damage responses. We found that all SQs are required for the full activation of SOG1 and that the expression level of most downstream genes changed incrementally depending on the number of phosphorylated SQ sites. Genes involved in DNA repair and cell cycle progression underwent stepwise activation and inhibition respectively as the number of phosphorylated SQ sites increased. Also, inhibition of DNA synthesis, programmed cell death, and cell differentiation were incrementally induced as the number of phosphorylated SQ sites increased. These results show that the extent of SQ phosphorylation in SOG1 regulates gene expression levels and determines the strength of DNA damage responses.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Dano ao DNA , Raios gama , Glicina/metabolismo , Serina/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Bleomicina/farmacologia , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Reparo do DNA/genética , Replicação do DNA/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Genes de Plantas , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Fatores de Transcrição/genética
5.
Plant Cell ; 26(1): 296-309, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399300

RESUMO

Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiologia , Proteínas Inibidoras de Quinase Dependente de Ciclina/fisiologia , Dano ao DNA , Espécies Reativas de Oxigênio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Hidroxiureia/farmacologia , Estresse Oxidativo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
6.
PLoS One ; 18(1): e0281162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36719882

RESUMO

Far-ultraviolet radiation C light (far-UVC; 222 nm wavelength) has received attention as a safer light for killing pathogenic bacteria and viruses, as no or little DNA damage is observed after irradiation in mammalian skin models. Far-UVC does not penetrate deeply into tissues; therefore, it cannot reach the underlying critical basal cells. However, it was unclear whether far-UVC (222-UVC) irradiation could cause more biological damage at shallower depths than the 254 nm UVC irradiation (254-UVC), which penetrates more deeply. This study investigated the biological effects of 222- and 254-UVC on the small and transparent model organism Caenorhabditis elegans. At the same energy level of irradiation, 222-UVC introduced slightly less cyclobutane pyrimidine dimer damage to naked DNA in solution than 254-UVC. The survival of eggs laid during 0-4 h after irradiation showed a marked decrease with 254-UVC but not 222-UVC. In addition, defect of chromosomal condensation was observed in a full-grown oocyte by 254-UVC irradiation. In contrast, 222-UVC had a significant effect on the loss of motility of C. elegans. The sensory nervous system, which includes dopamine CEP and PVD neurons on the body surface, was severely damaged by 222-UVC, but not by the same dose of 254-UVC. Interestingly, increasing 254-UVC irradiation by about 10-fold causes similar damage to CEP neurons. These results suggest that 222-UVC is less penetrating, so energy transfer occurs more effectively in tissues near the surface, causing more severe damage than 254-UVC.


Assuntos
Caenorhabditis elegans , Doenças do Sistema Nervoso Periférico , Animais , Caenorhabditis elegans/genética , Raios Ultravioleta , Dano ao DNA , Dímeros de Pirimidina/efeitos da radiação , Pele/microbiologia , Mamíferos
7.
Genes Genet Syst ; 90(4): 209-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26617076

RESUMO

The DNA damage response (DDR) is a critical mechanism to maintain the genome stability of an organism upon exposure to endogenous and exogenous DNA-damaging factors. The DDR system is particularly important for plants as these organisms, owing to their intrinsic immobility, are inevitably exposed to environmental stress factors, some of which induce DNA damage. Arabidopsis thaliana has orthologs of several DDR factors that are present in animals; however, some of the important animal regulators, such as the tumor suppressor p53 and the DDR kinases CHK1 and CHK2, have not been found in plants. These observations imply a unique DDR system in plants. The present review focuses on recent advances in our understanding of the DDR in A. thaliana and, in particular, on the function and role of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a plant-specific transcription factor that regulates the DDR. The most obvious response to DNA damage in A. thaliana is a rapid and robust change in the transcriptional regulation of numerous genes, in which SOG1 is an essential regulatory factor. Mutation of SOG1 causes various defects in the activation of cell cycle arrest, programmed cell death, and endoreduplication in response to DNA damage. These observations indicate that SOG1 is a master regulator of the DDR. Phylogenetic analyses of SOG1 reveal that orthologs of this crucial transcription factor are present not only in angiosperms but also in gymnosperms, suggesting that the SOG1 system is conserved across spermatophytes. Finally, future prospects for SOG1 research are also discussed.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dano ao DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Apoptose , Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular , Reparo do DNA , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Mutação , Filogenia
8.
Biology (Basel) ; 2(4): 1338-56, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24833228

RESUMO

The genome of an organism is under constant attack from endogenous and exogenous DNA damaging factors, such as reactive radicals, radiation, and genotoxins. Therefore, DNA damage response systems to sense DNA damage, arrest cell cycle, repair DNA lesions, and/or induce programmed cell death are crucial for maintenance of genomic integrity and survival of the organism. Genome sequences revealed that, although plants possess many of the DNA damage response factors that are present in the animal systems, they are missing some of the important regulators, such as the p53 tumor suppressor. These observations suggest differences in the DNA damage response mechanisms between plants and animals. In this review the DNA damage responses in plants and animals are compared and contrasted. In addition, the function of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a plant-specific transcription factor that governs the robust response to DNA damage, is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA