Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 19(1): 98, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516856

RESUMO

BACKGROUND: Neonatal calf diarrhea (NCD) is typically treated with antibiotics, while long-term application of antibiotics induces drug resistance and antibiotic residues, ultimately decreasing feed efficiency. Pueraria polysaccharide (PPL) is a versatile antimicrobial, immunomodulatory, and antioxidative compound. This study aimed to compare the therapeutic efficacy of different doses of PPL (0.2, 0.4, 0.8 g/kg body weight (BW)) and explore the effect of plasma metabolites in diarrheal calves by the best dose of PPL. RESULTS: PPL could effectively improve the daily weight gain, fecal score, and dehydration score, and the dosage of 0.4 g/kg BW could reach curative efficacy against calf diarrhea (with effective rates 100.00%). Metabolomic analysis suggested that diarrhea mainly affect the levels of taurocholate, DL-lactate, LysoPCs, and intestinal flora-related metabolites, trimethylamine N-oxide; however, PPL improved liver function and intestinal barrier integrity by modulating the levels of DL-lactate, LysoPC (18:0/0:0) and bilirubin, which eventually attenuated neonatal calf diarrhea. It also suggested that the therapeutic effect of PPL is related to those differential metabolites in diarrheal calves. CONCLUSIONS: The results showed that 0.4 g/kg BW PPL could restore the clinical score of diarrhea calves by improving the blood indexes, biochemical indexes, and blood metabolites. And it is a potential medicine for the treatment of calf diarrhea.


Assuntos
Pueraria , Animais , Bovinos , Diarreia/tratamento farmacológico , Diarreia/veterinária , Antibacterianos , Ácido Láctico , Metabolômica
2.
Asian-Australas J Anim Sci ; 33(12): 1930-1939, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32054179

RESUMO

OBJECTIVE: This study was conducted to investigate the differences in several serum adipokines in perinatal dairy cows with type I and II ketosis, and the correlations between these adipokines and the two types of ketosis. METHODS: Serum adiponectin (ADP), leptin (LEP), resistin, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels, and energy balance indicators related to ketosis were measured. Type I and II ketosis were distinguished by serum glucose (Glu) and Y values and the correlations between adipokines in the two types of ketosis were analyzed. RESULTS: ß-Hydroxybutyric acid of type I ketosis cows was significantly negatively correlated with insulin (INS) and LEP and had a significant positive correlation with serum ADP. In type II ketosis cows, ADP and LEP were significantly negatively correlated, and INS and resistin were significantly positively correlated. Revised quantitative INS sensitivity check index (RQUICKI) values had a significantly positive correlation with ADP and had a very significant and significant negative correlation with resistin, TNF-α, and IL-6. ADP was significantly negatively correlated with resistin and TNF-α, LEP had a significantly positive correlation with TNF-α, and a significantly positive correlation was shown among resistin, IL-6, and TNF-α. There was also a significant positive correlation between IL-6 and TNF-α. CONCLUSION: INS, ADP, and LEP might exert biological influences to help the body recover from negative energy balance, whereas resistin, TNF-α, and IL-6 in type II ketosis cows exacerbated INS resistance and inhibited the production and secretion of ADP, weakened INS sensitivity, and liver protection function, and aggravated ketosis.

3.
Front Vet Sci ; 9: 1024392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686167

RESUMO

Introduction: Neonatal calf diarrhea (NCD) is still one of the most critical diseases in calf rearing. Studies have shown that Pueraria lobata polysaccharides (PLP) have intense antioxidant and immunomodulatory activity and modulate gut microbiota. This randomized clinical trial aimed to determine the effect of PLP on the neonatal calf with diarrhea. Methods: In this study, we recorded the fecal score of experimental calves, and calves with fecal scores ≥ 2 were determined as diarrhea and assessed their serum concentrations of inflammatory cytokines and oxidative damage-related indices. Fecal microbiota and metabolomics of diarrheal calves were further investigated. Results: Results showed that treatment with PLP decreased the fecal score of diarrheal calves, serum concentrations of IL-1ß, TNF-γ, and malondialdehyde, and also elevated the level of superoxide dismutase. In addition, PLP treatment altered the gut microbiota, significantly increased the relative abundances of beneficial bacteria, including the phyla Bacteroidetes and Actinobacteria, the genus Collinsella, Megamonas, and Bifidobacterium; decreased the relative abundances of pathogenetic or diarrhea related bacteria, such as Proteobacteria, Fusobacteria, Clostridium_sensu_stricto_1, and Escherichia_Shigella. Moreover, PLP can increase the fecal concentrations of isobutyric acid, propionic acid, and pantothenate; lower the levels of PC [18:0/18:1(9Z)], arachidonic acid, and docosahexaenoic acid. Discussion: Thus, the results suggested that the PLP may perform the therapeutic activity via alleviating intestinal inflammation and regulating gut microbiota, avoiding further dysbiosis to restore the metabolism of gut microbiota, and finally promoting the recovery of diarrhea. The change further mitigated intestinal inflammation and oxidative damage in diarrheal calves. This indicated that PLP might be a promising treatment to attenuate diarrhea in neonatal calves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA