Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956660

RESUMO

Cytogenetic analysis of triploid Haliotis discus hannai larvae (produced by chemical treatment) and its diploids were performed. The results showed that triploid H. discus hannai had a chromosome number of 3n = 54, consisting of 30 metacentric (m) and 24 submetacentric (sm) chromosomes, while the diploids had a chromosome number of 2n = 36, consisting of 20 metacentric (m) and 16 submetacentric (sm) chromosomes. Notably, both triploids and diploids displayed variation in the number of NORs and/or their diameter. The average number of NORs was significantly higher in triploids than in diploids (P < 0.05), while there was no significant difference in the average diameter of NORs between the two groups (P > 0.05). Additionally, 5S rDNA localization to 3 submetacentric chromosomes was observed in triploids, compared to 2 submetacentric chromosomes in diploids. The number of 18S rDNA sites displayed positional conservancy and quantitative variability in both diploids and triploids. Specifically, 18S rDNA was found at the end of the chromosome in both groups, with triploids exhibiting a significantly higher number of loci than diploids (P < 0.01). This study provides valuable insights into the cytogenetic characteristics of triploid H. discus hannai, which could facilitate further research on the stability of the chromosome set in this species.

2.
BMC Genomics ; 23(1): 392, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606721

RESUMO

BACKGROUND: Transcriptome sequencing is an effective tool to reveal the essential genes and pathways underlying countless biotic and abiotic stress adaptation mechanisms. Although severely challenged by diverse environmental conditions, the Pacific abalone Haliotis discus hannai remains a high-value aquaculture mollusk and a Chinese predominantly cultured abalone species. Salinity is one of such environmental factors whose fluctuation could significantly affect the abalone's cellular and molecular immune responses and result in high mortality and reduced growth rate during prolonged exposure. Meanwhile, hybrids have shown superiority in tolerating diverse environmental stresses over their purebred counterparts and have gained admiration in the Chinese abalone aquaculture industry. The objective of this study was to investigate the molecular and cellular mechanisms of low salinity adaptation in abalone. Therefore, this study used transcriptome analysis of the gill tissues and flow cytometric analysis of hemolymph of H. discus hannai (DD) and interspecific hybrid H. discus hannai ♀ x H. fulgens ♂ (DF) during low salinity exposure. Also, the survival and growth rate of the species under various salinities were assessed. RESULTS: The transcriptome data revealed that the differentially expressed genes (DEGs) were significantly enriched on the fluid shear stress and atherosclerosis (FSS) pathway. Meanwhile, the expression profiles of some essential genes involved in this pathway suggest that abalone significantly up-regulated calmodulin-4 (CaM-4) and heat-shock protein90 (HSP90), and significantly down-regulated tumor necrosis factor (TNF), bone morphogenetic protein-4 (BMP-4), and nuclear factor kappa B (NF-kB). Also, the hybrid DF showed significantly higher and sustained expression of CaM and HSP90, significantly higher phagocytosis, significantly lower hemocyte mortality, and significantly higher survival at low salinity, suggesting a more active molecular and hemocyte-mediated immune response and a more efficient capacity to tolerate low salinity than DD. CONCLUSIONS: Our study argues that the abalone CaM gene might be necessary to maintain ion equilibrium while HSP90 can offset the adverse changes caused by low salinity, thereby preventing damage to gill epithelial cells (ECs). The data reveal a potential molecular mechanism by which abalone responds to low salinity and confirms that hybridization could be a method for breeding more stress-resilient aquatic species.


Assuntos
Aterosclerose , Gastrópodes , Animais , Gastrópodes/genética , Perfilação da Expressão Gênica , Salinidade , Estresse Salino/genética , Transcriptoma
3.
Environ Sci Technol ; 56(24): 17836-17848, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36479946

RESUMO

After being exposed to environmental stimuli during early developmental stages, some organisms may gain or weaken physiological regulating abilities, which would have long-lasting effects on their performance. Environmental hypoxia events can have significant effects on marine organisms, but for breeding programs and other practical applications, it is important to further explore the long-term physiological effects of early hypoxia exposure in economically significant species. In this study, the Pacific abalone Haliotis discus hannai was exposed to moderate hypoxia (∼4 mg/L) from zygote to trochophora, and the assessments of hypoxia tolerance were conducted on the grow-out stage. The results revealed that juvenile abalones exposed to hypoxia at the early development stages were more hypoxia-tolerant but with slower weight growth, a phenomenon called the trade-off between growth and survival. These phenotypic effects driven by the hypoxia exposure were explained by strong selection of genes involved in signal transduction, autophagy, apoptosis, and hormone regulation. Moreover, long non-coding RNA regulation plays an important role modulating carry-over effects by controlling DNA replication and repair, signal transduction, myocardial activity, and hormone regulation. This study revealed that the ability to create favorable phenotypic differentiation through genetic selection and/or epigenetic regulation is important for the survival and development of aquatic animals in the face of rapidly changing environmental conditions.


Assuntos
Epigênese Genética , Gastrópodes , Animais , Hipóxia/genética , Hormônios
4.
Ecotoxicol Environ Saf ; 242: 113873, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839528

RESUMO

In natural environments, the spectral composition of incident light is often subject to drastic changes due to the abundance of suspended particles, floating animals, and plants in coastal waters. In this study, after four months of culturing under blue light (NB), orange light (NY), dark environment (ND), and natural light (NN), the shell length and weight-specific growth rate in Pacific abalone, Haliotis discus hannai, were ranked in the following order: NY > NN > ND > NB. To understand the growth differences in abalone under these different light environments, we first performed 24-h video monitoring and found that the cumulative movement distance and duration were lowest in group NB, whereas the cumulative movement distance and duration were significantly higher in group ND than in any other group (P < 0.05). In group NB, the time spent hidden underneath the attachment substrate accounted for 81% of the resting time, but this ratio was lowest in group ND, at only 37% (P < 0.05). Next, LC-MS metabolomics identified 201 and 105 metabolites in NB vs. NN, ND vs. NN, and NY vs. NN under the positive and negative ion modes, respectively. According to the fold changes and annotations for differential metabolites in the KEGG enrichment pathways, adenosine, NAD+, cGMP, and arachidonic acid were used as differential metabolism markers, and the AMPK signaling pathway was enriched in every comparison group, and thus investigated further. The gene sequences of three subtypes of AMPK were obtained by cloning and we found that the expression levels of AMPKα and AMPKγ, and the AMP content were significantly higher in group NB than in any other group (P < 0.05). In addition, the ATP contents and adenylate energy charge values were ranked in the following order: NY > NN > ND > NB. According to in situ hybridization analysis, the three subtype genes were widely expressed in the hepatopancreas. Finally, the contents of many lipid metabolites differed significantly among groups and the expression levels of the triglyceride hydrolysis-related gene hormone sensitive lipase and fatty acid oxidation-related gene carnitine palmitoyltransferase 1 were higher in groups ND and NB than in groups NN and NY according to fluorescence quantification PCR (P < 0.05). The expression levels of fatty acid synthase and acetyl-CoA carboxylase were significantly lower in groups ND and NB than in groups NN and NY (P < 0.05). These findings indicated that differences in the spectral composition of incident light could reshape the behavior and physiological metabolism in abalone by influencing the "energy switch" AMPK, thereby providing some insights into the mechanisms that allow nocturnal marine organisms to adapt to different lighting environments.


Assuntos
Proteínas Quinases Ativadas por AMP , Gastrópodes , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Gastrópodes/metabolismo , Hepatopâncreas
5.
BMC Genomics ; 22(1): 650, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496767

RESUMO

BACKGROUND: Heterosis has been exploited for decades in different animals and crops due to it resulting in dramatic increases in yield and adaptability. Hybridization is a classical breeding method that can effectively improve the genetic characteristics of organisms through heterosis. Abalone has become an increasingly economically important aquaculture resource with high commercial value. However, due to changing climate, abalone is now facing serious threats of high temperature in summer. Interspecific hybrid abalone (Haliotis gigantea ♀ × H. discus hannai ♂, SD) has been cultured at large scale in southern China and has been shown high survival rates under heat stress in summer. Therefore, SD has become a good model material for heterosis research, but the molecular basis of heterosis remains elusive. RESULTS: Heterosis in thermal tolerance of SD was verified through Arrhenius break temperatures (ABT) of cardiac performance in this study. Then RNA-Sequencing was conducted to obtain gene expression patterns and alternative splicing events at control temperature (20 °C) and heat stress temperature (30 °C). A total of 356 (317 genes), 476 (435genes), and 876 (726 genes) significantly diverged alternative splicing events were identified in H. discus hannai (DD), H. gigantea (SS), and SD in response to heat stress, respectively. In the heat stress groups, 93.37% (20,512 of 21,969) of the expressed genes showed non-additive expression patterns, and over-dominance expression patterns of genes account for the highest proportion (40.15%). KEGG pathway enrichment analysis showed that the overlapping genes among common DEGs and NAGs were significantly enriched in protein processing in the endoplasmic reticulum, mitophagy, and NF-κB signaling pathway. In addition, we found that among these overlap genes, 39 genes had undergone alternative splicing events in SD. These pathways and genes may play an important role in the thermal resistance of hybrid abalone. CONCLUSION: More alternative splicing events and non-additive expressed genes were detected in hybrid under heat stress and this may contribute to its thermal heterosis. These results might provide clues as to how hybrid abalone has a better physiological regulation ability than its parents under heat stress, to increase our understanding of heterosis in abalone.


Assuntos
Gastrópodes , Vigor Híbrido , Animais , Gastrópodes/genética , Perfilação da Expressão Gênica , Vigor Híbrido/genética , Hibridização Genética , Melhoramento Vegetal , Transcriptoma
6.
J Clin Lab Anal ; 35(8): e23817, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34114685

RESUMO

BACKGROUND: Doxorubicin is a first-line chemotherapy agent on human myelogenous leukemia clinical treatment, but the development of chemoresistance has largely limited curative effect. In this study, we aimed to evaluate the biological function and molecular mechanisms of CrkL to Doxorubicin resistance. METHODS: Quantitative reverse transcription-PCR (qRT-PCR) assay was performed to examine the expression of CrkL in K562 and K562/ADR cells. The expression of CrkL was silenced through RNA interference technology. MTT assay and flow cytometry were performed to detect the proliferation inhibition and apoptosis rate after CrkL siRNA transfection. The protein expression changes of PI3K/AKT/MRP1 pathway induced by CrkL siRNA were observed by Western Blot assay. Xenograft tumor model was carried out to observe tumor growth in vivo. RESULTS: We observed that silencing of CrkL could effectively increase apoptosis rate induced by doxorubicin and dramatically reversed doxorubicin resistance in K562/ADR cells. Further studies revealed knockdown CrkL expression suppressed PI3K/Akt/MRP1 signaling, which indicated CrkL siRNA reversed doxorubicin effect through regulating PI3K/Akt/MRP1 pathway. In addition, overexpression of MRP1 could evidently reduce apoptosis rate and reversed the inhibitory effects of doxorubicin resistance caused by CrkL siRNA on K562/ADR cells. Finally, in vivo experiments revealed that CrkL silencing acted a tumor-suppressing role in myelogenous leukemia via regulating PI3K/Akt/MRP1 signaling. CONCLUSION: Together, we indicated that CrkL is up-regulated in myelogenous leukemia cells and silencing of CrkL could reverse Doxorubicin resistance effectively. These results show a potential novel strategy for intervention chemoresistance in myelogenous leukemia during chemotherapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Células K562 , Camundongos Nus , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Fish Shellfish Immunol ; 98: 109-111, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911289

RESUMO

Mass mortality of juvenile hybrid (Haliotis discus hannai â™€× H. fulgens ♂, DF) and adult H. discus hannai (DD) occurs in south China during the summer. This study showed that the juvenile DF and adult DD exhibited significantly lower survival rates than juvenile DD and adult DF under 72 h pathogenic bacteria (Vibrio harveyi) challenge at different temperatures (20 °C and 28 °C). Phenoloxidase (PO) and superoxide dismutase (SOD) activities were significantly higher in juvenile DD compared to juvenile DF, whereas that in adult abalone was the opposite. Juvenile DD and adult DF also exhibited advantages in terms of immune-related gene expression (TRAF, TLR, MIF, Lys, Spi, Cat, TNF, and SOD) compared to juvenile DF and adult DD. The data reveals immunocompetence differences in DD and DF at the juvenile and adult stages.


Assuntos
Gastrópodes/imunologia , Imunidade Inata , Vibrio/fisiologia , Fatores Etários , Animais , China , Hibridização Genética
8.
Fish Shellfish Immunol ; 92: 72-82, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31129186

RESUMO

Cu and Zn are hyper-accumulated in oysters, and the accumulation of these metals increases host resistance to pathogens. However, the role of Cu/Zn in oyster immune defense remains unclear. In this study, Crassostrea angulata with different levels of Cu and Zn were obtained through metal exposure or selective breeding. Both in vivo and in vitro experiments showed that oysters accumulating more Cu/Zn exhibited stronger antibacterial abilities. Vibrio harveyi infection significantly promoted the metal redistribution in oysters: Cu and Zn concentrations decreased in the mantle, but increased in the plasma and hemocytes. This redistribution was accompanied by changes in the expression levels of Cu and Zn transporter genes (CTR1, ATP7A, ZIP1, and ZNT2), suggesting that the Cu/Zn burst observed in the hemocytes was likely due to the transfer of heavy metals from plasma (mediated by the metal importer proteins) or released from intracellular stores. The degree to which Cu/Zn concentration increased in the plasma and hemocytes was more dramatic in oysters with high levels of Cu/Zn accumulation. In vitro, Cu and Zn both inhibited the growth of V. harveyi, while Cu plus H2O2 was lethal to the bacteria. The strength of the growth-inhibition and lethal effects depended on the metal dose. In addition to these effects, increases in Cu concentration increased the activity levels of PO in the oyster plasma and hemocytes in vivo and in vitro. However, SOD activity was not affected by Cu or Zn accumulation. Thus, our results suggested that the Cu/Zn burst in the hemolymph was an important factor in the oyster immune reaction, creating a toxic internal environment for the pathogen, as well as catalyzing inorganic or enzymatic reactions to strengthen bacteriostasis. By determining the extent of Cu/Zn burst in the immune response, Cu/Zn accumulated levels could affect the resistance of oysters to pathogens.


Assuntos
Cobre/metabolismo , Crassostrea/imunologia , Imunidade Inata/fisiologia , Vibrio/fisiologia , Zinco/metabolismo , Animais , Crassostrea/metabolismo , Crassostrea/microbiologia , Distribuição Aleatória , Vibrio/efeitos dos fármacos , Vibrio/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo
9.
Fish Shellfish Immunol ; 92: 405-420, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31212011

RESUMO

The haemocytes of the ivory shell, Babylonia areolata are classified by morphologic observation into the following types: hyalinocytes (H) and granulocytes (G). Haemocytes comprise diverse cell types with morphological and functional heterogene and play indispensable roles in immunological homeostasis of invertebrates. In the present study, two types of haemocytes were morphologically identified and separated as H and G by Percoll density gradient centrifugation. The differentially expressed proteins were investigated between H and G using mass spectrometry. The results showed that total quantitative proteins between H and G samples were 1644, the number of up-regulated proteins in G was 215, and the number of down-regulated proteins in G was 378. Among them, cathepsin, p38 MAPK, toll-interacting protein-like and beta-adrenergic receptor kinase 2-like were up-regulated in G; alpha-2-macroglobulin-like protein, C-type lectin, galectin-2-1, galectin-3, ß-1,3-glucan-binding protein, ferritin, mega-hemocyanin, mucin-17-like, mucin-5AC-like and catalytic subunit of protein kinase A were down-regulated in G. The results showed that the most significantly enriched KEGG pathways were the pathways related to ribosome, phagosome, endocytosis, carbon metabolism, protein processing in endoplasmic reticulum and oxidative phosphorylation. For phagosome and endocytosis pathway, the number of down-regulation proteins in G was more than that of up-regulation proteins. For lysosome pathway, the number of up-regulation proteins in G was more than that of down-regulation proteins. These results suggested that two sub-population haemocytes perform the different immune functions in B. areolata.


Assuntos
Bivalves/genética , Hemócitos/imunologia , Proteoma/imunologia , Animais , Bivalves/imunologia , Granulócitos/imunologia
10.
BMC Genomics ; 19(1): 915, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545311

RESUMO

BACKGROUND: The Pacific abalone, Haliotis discus hannai, is the most important cultivated abalone in China. Improving abalone muscle growth and increasing the rate of growth are important genetic improvement programs in this industry. MicroRNAs are important small noncoding RNA molecules that regulate post-transcription gene expression. However, no miRNAs have been reported to regulate muscle growth in H. discus hannai. RESULTS: we profiled six small RNA libraries for three large abalone individuals (L_HD group) and three small individuals (S_HD group) using RNA sequencing technology. A total of 205 miRNAs, including 200 novel and 5 known miRNAs, were identified. In the L_HD group, 3 miRNAs were up-regulated and 7 were down-regulated compared to the S_HD specimens. Bioinformatics analysis of miRNA target genes revealed that miRNAs participated in the regulation of cellular metabolic processes, the regulation of biological processes, the Wnt signaling pathway, ECM-receptor interaction, and the MAPK signaling pathway, which are associated with regulating growth. Bone morphogenetic protein 7 (BMP7) was verified as a target gene of hdh-miR-1984 by a luciferase reporter assay and we examined the expression pattern in different developmental stages. CONCLUSION: This is the first study to demonstrate that miRNAs are related to the muscle growth of H. discus hannai. This information could be used to study the mechanisms of abalone muscle growth. These DE-miRNAs may be useful as molecular markers for functional genomics and breeding research in abalone and closely related species.


Assuntos
Gastrópodes/genética , MicroRNAs/metabolismo , Músculos/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Sequência de Bases , Proteína Morfogenética Óssea 7/química , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Análise por Conglomerados , Biologia Computacional , Regulação da Expressão Gênica , Biblioteca Gênica , Redes Reguladoras de Genes , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Desenvolvimento Muscular/genética , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA
11.
Fish Shellfish Immunol ; 72: 679-689, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29127030

RESUMO

Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids are more active or efficient in immune system function, hence they could effectively defense against a bacterial invasion, leading to higher survival rates after challenge. This study provides physiological and molecular evidences for interpreting the disease resistant heterosis in this abalone hybrid system, which could help us in a better understanding and utilization of heterosis in abalone aquaculture.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Hibridização Genética/imunologia , Transcrição Gênica/imunologia , Vibrio/fisiologia , Animais , Cruzamento
12.
BMC Genomics ; 18(1): 809, 2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058591

RESUMO

BACKGROUND: Haliotis diversicolor is commercially important species. The trochophore and veliger are distinct larval stages in gastropod development. Their development involves complex morphological and physiological changes. We studied protein changes during the embryonic development of H. diversicolor using two dimensional electrophoresis (2-DE) and label-free methods, tandem mass spectrometry (MS/ MS), and Mascot for protein identification. RESULTS: A total of 150 2-DE gel spots were identified. Protein spots showed upregulation of 15 proteins and downregulation of 28 proteins as H. diversicolor developed from trochophore to veliger larvae. Trochophore and veliger larvae were compared using a label-free quantitative proteomic approach. A total of 526 proteins were identified from both samples, and 104 proteins were differentially expressed (> 1.5 fold). Compared with trochophore larvae, veliger larvae had 55 proteins upregulated and 49 proteins downregulated. These differentially expressed proteins were involved in shell formation, energy metabolism, cellular and stress response processes, protein synthesis and folding, cell cycle, and cell fate determination. Compared with the 5 protein (fructose-bisphosphate aldolase, 14-3-3ε, profilin, actin-depolymerizing factor (ADF)/cofilin) and calreticulin) expression patterns, the mRNA expression exhibited similar patterns except gene of fructose-bisphosphate aldolase. CONCLUSION: Our results provide insight into novel aspects of protein function in shell formation, torsion, and nervous system development, and muscle system differentiation in H. diversicolor larvae. "Quality control" proteins were identified to be involved in abalone larval development.


Assuntos
Gastrópodes/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Gastrópodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mapas de Interação de Proteínas
13.
Int J Mol Sci ; 18(11)2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29068414

RESUMO

The abalone Haliotis discus hannai is an important aquaculture species that is grown for human consumption. However, little is known of the genetic mechanisms governing muscle growth in this species, particularly with respect to proteomics. The isobaric tag for relative and absolute quantitation (iTRAQ) method allows for sensitive and accurate protein quantification. Our study was the first to use iTRAQ-based quantitative proteomics to investigate muscle growth regulation in H. discus hannai. Among the 1904 proteins identified from six samples, 125 proteins were differentially expressed in large specimens of H. discus hannai as compared to small specimens. In the large specimens, 47 proteins were upregulated and 78 were downregulated. Many of the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including these differentially expressed proteins, were closely related to muscle growth, including apoptosis, thyroid hormone signaling, regulation of the actin cytoskeleton, and viral myocarditis (p < 0.05). Our quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the alterations in expression levels observed in the differentially expressed proteins were consistent with the alterations observed in the encoding mRNAs, indicating the repeatability of our proteomic approach. Our findings contribute to the knowledge of the molecular mechanisms of muscle growth in H. discus hannai.


Assuntos
Gastrópodes/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteoma/genética , Animais , Gastrópodes/genética , Gastrópodes/metabolismo , Desenvolvimento Muscular/genética
14.
Mol Biol Rep ; 42(5): 963-75, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25399080

RESUMO

Caspases have been demonstrated to possess important functions in apoptosis and immune system in vertebrate. But there is less information reported on the oyster larval development. In the present work, two full-length molluscan caspase genes, named Cacaspase-2 and Cacaspase-3, were characterized for the first time from Fujian oyster, Crassostrea angulata. Which respectively encode two predicted proteins both containing two caspase domains of p20 and p10 including the cysteine active site pentapeptide "QACRG" and the histidine active site signature. Otherwise Cacaspase-2 also contains a caspase recruitment domain. Homology and phylogenetic analysis showed that Cacaspase-2 shared high similarity with initiator caspase-2 groups, but Cacaspase-3 clustered together with executioner caspase-3 groups. Cacaspase-2 and Cacaspase-3 mRNA were both highly expressed in gills and labial palp and were significantly expressed highly in larvae during settlement and metamorphosis. Through the whole mount in situ hybridization, the location of Cacaspase-2 is in the foot of the oyster larvae and the location of Cacaspase-3 is in both the foot and velum tissues. These results implied that Cacaspase-2 and Cacaspase-3 genes play a key role in the loss of foot and Cacaspase-3 gene has an important function in the loss of velum during larvae metamorphosis in C. angulata.


Assuntos
Caspases/genética , Crassostrea/genética , Metamorfose Biológica/genética , Sequência de Aminoácidos , Animais , Caspases/fisiologia , Clonagem Molecular , Crassostrea/crescimento & desenvolvimento , Evolução Molecular , Expressão Gênica , Genes , Metamorfose Biológica/fisiologia , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Domínios e Motivos de Interação entre Proteínas
15.
Dev Genes Evol ; 224(4-6): 197-207, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25115590

RESUMO

The transcriptional activity of the SARP19-I1 and vdg3-I1 genes increases over tenfold when Haliotis diversicolor larvae shift from the pelagic to benthic lifestyle, signifying the important role of these genes during abalone metamorphosis. In this study, eight paralogous SARP19 genes and six paralogous vdg3 genes were identified from H. diversicolor transcriptomes. Phylogenetic analyses were performed, and the spatio-temporal expression patterns of these genes were separately determined by quantitative polymerase chain reaction (qPCR) and whole mount in situ hybridization (WMISH). Five SARP19 paralogs and five vdg3 paralogs showed at least a tenfold increase in expression after settlement. Among these differentially expressed genes, three SARP19 paralogs and four vdg3 paralogs were verified as being spatially expressed in the digestive glands of newly settled postlarvae. We proposed that a hypothesis of coevolution between the two gene families might explain the similarities in their expression patterns and their phylogenetics.


Assuntos
Gastrópodes/crescimento & desenvolvimento , Gastrópodes/genética , Animais , Evolução Molecular , Gastrópodes/fisiologia , Duplicação Gênica , Metamorfose Biológica , Filogenia , Transcriptoma
16.
Fish Shellfish Immunol ; 39(1): 69-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794582

RESUMO

Recently, frequent death of cultured abalone drew our attention to the stress tolerance of abalone. Hybridization is an effective way of genetic improvement in aquaculture, which can introduce improved traits to the hybrids. In this study, we challenged the hybrids between Haliotis discus hannai and Haliotis gigantea, and their parents with bacteria (vibrio harveyi, vibrio alginolyticus and vibrio parahemolyticus), then held them at 20 °C and 28 °C, survival rates of the parental populations and hybrid populations were recorded. Then we tested the immune responses and thermal-induced responses of the four populations at different temperatures. Total hemocyte count (THC), respiratory burst, superoxide dismutase activity (SOD), acid phosphatase activity (ACP), alkaline phosphatase activity (AKP), myeloperoxidase activity (MPO), and HSP70 expression were determined on day 1 and day 7 of the temperature exposure. Results showed higher survival rates of the hybrids than their parents against bacteria challenge. For immune parameters, THCs were evaluated at 28 °C, while increased THC was also observed in H. discus hannai ♀ × H. gigantea ♂ (DG) and H. discus hannai ♀ × H. discus hannai ♂ (DD) at 12 °C (day 7); at 28 °C, respiratory burst was activated (day 1 and 7), while SOD activity first rose then fell over 7-days exposure; AKP activity was elevated at 12 °C and 28 °C (day 1), most notably in DG, and an increased level of ACP was observed in DG at 28 °C (day 7); MPO activity was suppressed at 12 °C and 28 °C on day 1, but recovered on day 7. For HSP70, increased HSP70 levels were observed in all populations at 28 °C (day 1), and DD got the lowest HSP70 level after 7-days exposure at 28 °C. Overall, the results suggest that temperature changes could significantly affect the physiological status of abalone, and hybrids may be more resistant to disease and thermal stresses than their parents.


Assuntos
Gastrópodes/fisiologia , Hibridização Genética/imunologia , Imunidade Inata , Vibrio/imunologia , Animais , Aquicultura , Gastrópodes/genética , Gastrópodes/imunologia , Gastrópodes/microbiologia , Temperatura Alta , Reação em Cadeia da Polimerase em Tempo Real
17.
Animals (Basel) ; 14(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254350

RESUMO

Carotenoids, known to enhance survival, heat tolerance, and bacterial resistance, play an essential role in the nutrition of economically important aquatic animals. This study specifically examined their impact as feed additives on the abalone Haliotis gigantea. We prepared 13 compound feeds with varying levels of astaxanthin, zeaxanthin, and ß-carotene, and administered them to both common-footed and orange-footed H. gigantea. The survival rate of H. gigantea was about 70-80%, with no significant differences in survival observed among the various carotenoid-supplemented feeding groups or when compared with the control group, nor between orange-footed and common-footed individuals. In heat attachment duration experiments, orange-foot abalones exhibited longer attachment durations with certain concentrations of astaxanthin and zeaxanthin, whereas common-foot abalones showed extended durations with astaxanthin, zeaxanthin, and ß-carotene, indicating that common-foot abalones might benefit more from these carotenoids. Additionally, our results showed similar patterns and levels of Vibrio harveyi AP37 resistance in both orange-footed and common-footed H. gigantea, suggesting a uniform response to carotenoid supplementation in their bacterial defense mechanisms. This study suggests the potential benefits of carotenoid supplementation in H. gigantea and contributes to the theoretical basis for developing high-quality artificial compound feeds.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38430709

RESUMO

Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.


Assuntos
Gastrópodes , Estresse Salino , Transdução de Sinais , Animais , Gastrópodes/genética , Gastrópodes/fisiologia , Gastrópodes/metabolismo , Transcriptoma
19.
Proteomics ; 13(5): 845-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23281212

RESUMO

Protein expression patterns were compared in a Japan and Taiwan population of Haliotis diversicolor and in a hybrid between them using 2DE and MALDI-TOF-TOF analyses. Using the software PDQuest, 924 ± 7 protein spots were detected in the Japan population (RR), 861 ± 11 in the Taiwan population (TT), and 882 ± 9 in the F1 hybrid (TR). RR and TR were clustered together, but the distance between RR and TT was the maximum using hierarchical cluster analysis. A total of 46 gel spots were identified and a total of 15 spots matched with abalone proteins (a 33.6% identification rate). Hybrid exhibiting additivity or overdominance accounted for 73.9% of these 46 identified proteins. The 46 differentially expressed proteins were shown to be involved in major biological processes, including muscle contraction and regulation, energy metabolism, and stress response. The proteins involved in energy metabolism included adenosine triphosphate (ATP) synthase ß subunit, fructose 1, 6-bisphosphate aldolase, triosephosphate isomerase, enolase, arginine kinase, and tauropine dehydrogenase. These proteins exhibited additivity in their offspring. The proteins involved in stress responses included HSP Hsp70 (exhibiting overdominance in the offspring) and Cu/Zn-superoxide dismutase (exhibiting additivity). These results suggested that proteomic approach is suitable for analysis of heterosis and functional prediction of abalone hybridization.


Assuntos
Gastrópodes/genética , Hibridização Genética/genética , Proteínas Musculares/genética , Proteômica/métodos , Análise de Variância , Animais , Análise por Conglomerados , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Gastrópodes/metabolismo , Proteínas Musculares/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estatísticas não Paramétricas , Frações Subcelulares/química
20.
Dis Aquat Organ ; 103(2): 133-9, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23548363

RESUMO

Mass mortality of farmed small abalone Haliotis diversicolor occurred in Fujian, China, from 2009 to 2011. Among isolates obtained from moribund abalones, the dominant species AP37 exhibited the strongest virulence. After immersion challenge with 106 CFU ml-1 of AP37, abalone mortalities of 0, 53 and 67% were induced at water temperatures of 20°C, 24°C, and 28°C, respectively. Following intramuscular injection, AP37 showed a low LD50 (median lethal concentration) value of 2.9 × 102 CFU g-1 (colony forming units per gram abalone wet body weight). The LT50 (median lethal time) values were 5.2 h for 1 × 106 CFU abalone-1, 8.4 h for 1 × 105 CFU abalone-1, and 21.5 h for 1 × 104 CFU abalone-1. For further analysis of virulence, AP37 was screened for the production of extracellular factors. The results showed that various factors including presence of flagella and production of extracellular enzymes, such as lipase, phospholipase and haemolysin, could be responsible for pathogenesis. Based on its 16S rRNA gene sequence, strain AP37 showed >98.8% similarity to Vibrio harveyi, V. campbellii, V. parahaemolyticus, V. alginolyticus, V. natriegens and V. rotiferianus, so it could not be identified by this method. However, multi-locus sequence analysis (MLSA) of concatenated sequences, including the rpoD, rctB, gyrB, toxR and pyrH genes, identified strain AP37 as V. harveyi. Phenotypic characters of AP37 were identified by API 20E. In antibiotic susceptibility tests, strain AP37 exhibited susceptibility to 7 antibiotics and resistance to 13. This is the first report of a V. harveyi-related species being linked with the mass mortality of adult abalone H. diversicolor in southern China.


Assuntos
Moluscos/microbiologia , Vibrio/isolamento & purificação , Vibrio/fisiologia , Animais , China , Interações Hospedeiro-Patógeno , Oceano Pacífico , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA