Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(3): 584-593, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38417439

RESUMO

Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.


Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Proteína BRCA2/genética , Testes Genéticos , Mutação de Sentido Incorreto/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Germinativas/patologia , DNA
2.
J Neurophysiol ; 130(2): 345-352, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37435651

RESUMO

Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.


Assuntos
COVID-19 , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Humanos , Microscopia Eletrônica de Varredura , Pandemias , Hipotálamo , Obesidade , Dieta Hiperlipídica/efeitos adversos
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142395

RESUMO

A wide range of viruses cause neurological manifestations in their hosts. Infection by neurotropic viruses as well as the resulting immune response can irreversibly disrupt the complex structural and functional architecture of the brain, depending in part on host genetic background. The interaction between host genetic background, neurological response to viral infection, and subsequent clinical manifestations remains poorly understood. In the present study, we used the genetically diverse Collaborative Cross (CC) mouse resource to better understand how differences in genetic background drive clinical signs and neuropathological manifestations of acute Theiler's murine encephalomyelitis virus (TMEV) infection. For the first time, we characterized variations of TMEV viral tropism and load based on host genetic background, and correlated viral load with microglial/macrophage activation. For five CC strains (CC002, CC023, CC027, CC057, and CC078) infected with TMEV, we compared clinical signs, lesion distribution, microglial/macrophage response, expression, and distribution of TMEV mRNA, and identified genetic loci relevant to the early acute (4 days post-infection [dpi]) and late acute (14 dpi) timepoints. We examined brain pathology to determine possible causes of strain-specific differences in clinical signs, and found that fields CA1 and CA2 of the hippocampal formation were especially targeted by TMEV across all strains. Using Iba-1 immunolabeling, we identified and characterized strain- and timepoint-specific variation in microglial/macrophage reactivity in the hippocampal formation. Because viral clearance can influence disease outcome, we used RNA in situ hybridization to quantify viral load and TMEV mRNA distribution at both timepoints. TMEV mRNA expression was broadly distributed in the hippocampal formation at 4 dpi in all strains but varied between radiating and clustered distribution depending on the CC strain. We found a positive correlation between microglial/macrophage reactivity and TMEV mRNA expression at 4 dpi. At 14 dpi, we observed a dramatic reduction in TMEV mRNA expression, and localization to the medial portion of field CA1 and field CA2. To better understand how host genetic background can influence pathological outcomes, we identified quantitative trait loci associated with frequency of lesions in a particular brain region and with microglial/macrophage reactivity. These QTL were located near several loci of interest: lysosomal trafficking regulator (Lyst) and nidogen 1 (Nid1), and transmembrane protein 106 B (Tmem106b). Together, these results provide a novel understanding about the influences of genetic variation on the acute neuropathological and immunopathological environment and viral load, which collectively lead to variable disease outcomes. Our findings reveal possible avenues for future investigation which may lead to more effective intervention strategies and treatment regimens.


Assuntos
Theilovirus , Animais , Patrimônio Genético , Camundongos , Doenças Neuroinflamatórias , RNA , RNA Mensageiro , Theilovirus/genética
4.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768809

RESUMO

Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.


Assuntos
Infecções por Cardiovirus/genética , Regulação da Expressão Gênica , Hipocampo/metabolismo , Medula Espinal/metabolismo , Theilovirus , Animais , Doenças Desmielinizantes , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Masculino , Camundongos , Análise de Sequência de RNA
5.
Physiol Genomics ; 51(8): 333-341, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172876

RESUMO

Insulin acts within the central nervous system through the insulin receptor to influence both metabolic and cardiovascular physiology. While a major focus has been placed on hypothalamic regions, participation of extrahypothalamic insulin receptors in cardiometabolic regulation remains largely unknown. We hypothesized that insulin receptors in the subfornical organ (SFO), a forebrain circumventricular region devoid of a blood-brain barrier, are involved in metabolic and cardiovascular regulation. Immunohistochemistry in mice revealed widespread insulin receptor-positive cells throughout the rostral to caudal extent of the SFO. SFO-targeted adenoviral delivery of Cre-recombinase in insulin receptorlox/lox mice resulted in sufficient ablation of insulin receptors in the SFO. Interestingly, when mice were maintained on a normal chow diet, deletion of SFO insulin receptors resulted in greater weight gain and adiposity, relative to controls, independently of changes in food intake. In line with this, ablation of insulin receptors in the SFO was associated with marked hepatic steatosis and hypertriglyceridemia. Selective removal of SFO insulin receptors also resulted in a lower mean arterial blood pressure, which was primarily due to a reduction in diastolic blood pressure, whereas systolic blood pressure remained unchanged. Cre-mediated targeting of SFO insulin receptors did not influence heart rate. These data demonstrate multidirectional roles for insulin receptor signaling in the SFO, with ablation of SFO insulin receptors resulting in an overall deleterious metabolic state while at the same time maintaining blood pressure at low levels. These novel findings further suggest that alterations in insulin receptor signaling in the SFO could contribute to metabolic syndrome phenotypes.


Assuntos
Sistema Cardiovascular/metabolismo , Síndrome Metabólica/metabolismo , Receptor de Insulina/metabolismo , Órgão Subfornical/metabolismo , Adiposidade/genética , Animais , Pressão Sanguínea/genética , Fígado Gorduroso/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Hipertrigliceridemia/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor de Insulina/genética , Aumento de Peso/genética
6.
J Physiol ; 597(17): 4565-4580, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31278754

RESUMO

KEY POINTS: Non-alcoholic fatty liver disease, characterized in part by elevated liver triglycerides (i.e. hepatic steatosis), is a growing health problem. In this study, we found that hepatic steatosis is associated with robust hepatic sympathetic overactivity. Removal of hepatic sympathetic nerves reduced obesity-induced hepatic steatosis. Liver sympathetic innervation modulated hepatic lipid acquisition pathways during obesity. ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 Americans and is a significant risk factor for type II diabetes mellitus, insulin resistance and hepatic carcinoma. Characterized in part by excessive hepatic triglyceride accumulation (i.e. hepatic steatosis), the incidence of NAFLD is increasing - in line with the growing obesity epidemic. The role of the autonomic nervous system in NAFLD remains unclear. Here, we show that chronic hepatic sympathetic overactivity mediates hepatic steatosis. Direct multiunit recordings of hepatic sympathetic nerve activity were obtained in high fat diet and normal chow fed male C57BL/6J mice. To reduce hepatic sympathetic nerve activity we utilized two approaches including pharmacological ablation of the sympathetic nerves and phenol-based hepatic sympathetic nerve denervation. Diet-induced NAFLD was associated with a nearly doubled firing rate of the hepatic sympathetic nerves, which was largely due to an increase in efferent nerve traffic. Furthermore, established high fat diet-induced hepatic steatosis was effectively reduced with pharmacological or phenol-based removal of the hepatic sympathetic nerves, independent of changes in body weight, caloric intake or adiposity. Ablation of liver sympathetic nerves was also associated with improvements in liver triglyceride accumulation pathways including free fatty acid uptake and de novo lipogenesis. These findings highlight an unrecognized pathogenic link between liver sympathetic outflow and hepatic steatosis and suggest that manipulation of the liver sympathetic nerves may represent a novel therapeutic strategy for NAFLD.


Assuntos
Fígado Gorduroso/cirurgia , Fígado/cirurgia , Obesidade/terapia , Adiposidade/fisiologia , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade/metabolismo , Simpatectomia/métodos , Triglicerídeos/metabolismo
7.
Value Health ; 22(6): 621-626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31198178

RESUMO

OBJECTIVES: To estimate, at the indication level, durable gene and cellular therapy new product launches in the United States through 2030, and the number of treated patients. METHODS: A statistical analysis of clinical trials pipeline data and disease incidence and prevalence was conducted to estimate the impact of new cell and gene therapies. We used Citeline's® Pharmaprojects® database to estimate the rates and timing of new product launches, on the basis of the phase of development, duration in phase, and probability of progression. Disease incidence and prevalence data were combined with estimates of market adoption to project the size of reimbursed patient populations. RESULTS: We project that about 350 000 patients will have been treated with 30 to 60 products by 2030. About half the launches are expected to be in B-cell (CD-19) lymphomas and leukemias. CONCLUSIONS: Cell and gene therapies promise durable clinical benefit from a single treatment course. High upfront reimbursement for these products means that the total costs could exceed what the healthcare system can manage. This creates a need for precision financing solutions and new reimbursement models that can ensure appropriate patient access to needed treatments, increase affordability for payers, and sustain private investment in innovation.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/economia , Terapia Genética/economia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Desenvolvimento Econômico/tendências , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Estados Unidos
8.
Anal Chem ; 90(14): 8665-8672, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29906090

RESUMO

This paper examines how the difference in the spatial orientation of the capture substrate influences the analytical sensitivity and limits of detection for immunoassays that use gold nanoparticle labels (AuNPs) and rely on diffusion in quiet solution in the antigen capture and labeling steps. Ideally, the accumulation of both reactants should follow a dependence governed by the rate in which diffusion delivers reactants to the capture surface. In other words, the accumulation of reactants should increase with the square root of the incubation time, i.e., t1/2. The work herein shows, however, that this expectation is only obeyed when the capture substrate is oriented to direct the gravity-induced sedimentation of the AuNP labels away from the substrate. Using an assay for human IgG, the results show that circumventing the sedimentation of the gold nanoparticle labels by substrate inversion enables the dependence of the labeling step on diffusion, reduces nonspecific label adsorption, and improves the estimated detection limit by ∼30×. High-density maps of the signal across the two types of substrates also demonstrate that inversion in the labeling step results in a more uniform distribution of AuNP labels across the surface, which translates to a greater measurement reproducibility. These results, which are supported by model simulations via the Mason-Weaver sedimentation-diffusion equation, and their potential implications when using other nanoparticle labels and related materials in diagnostic tests and other applications, are briefly discussed.


Assuntos
Ouro/química , Imunoensaio/instrumentação , Imunoglobulina G/análise , Nanopartículas Metálicas/química , Adsorção , Difusão , Humanos , Propriedades de Superfície
9.
Am J Physiol Regul Integr Comp Physiol ; 315(1): R84-R89, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29590558

RESUMO

Evidence from animal studies indicates that hyperinsulinemia, without changes in glucose, increases ventilation via a carotid body-mediated mechanism. However, whether insulin elevates ventilation in humans independently of changes in glucose remains unclear. Therefore, we tested the hypothesis that insulin increases ventilation in humans during a hyperinsulinemic-euglycemic clamp in which insulin was elevated to postprandial concentrations while glucose was maintained at fasting concentrations. First, in 16 healthy young men ( protocol 1), we retrospectively analyzed respiration rate and estimated tidal volume from a pneumobelt to calculate minute ventilation during a hyperinsulinemic-euglycemic clamp. In addition, for a direct assessment of minute ventilation during a hyperinsulinemic-euglycemic clamp, we retrospectively analyzed breath-by-breath respiration rate and tidal volume from inspired/expired gasses in an additional 23 healthy young subjects ( protocol 2). Clamp infusion elevated minute ventilation from baseline in both protocols ( protocol 1: +11.9 ± 4.6% baseline, P = 0.001; protocol 2: +9.5 ± 3.8% baseline, P = 0.020). In protocol 1, peak changes in both respiration rate (+13.9 ± 3.0% baseline, P < 0.001) and estimated tidal volume (+16.9 ± 4.1% baseline, P = 0.001) were higher than baseline during the clamp. In protocol 2, tidal volume primarily increased during the clamp (+9.7 ± 3.7% baseline, P = 0.016), as respiration rate did not change significantly (+0.2 ± 1.8% baseline, P = 0.889). Collectively, we demonstrate for the first time in humans that elevated plasma insulin increases minute ventilation independent of changes in glucose.


Assuntos
Glicemia/metabolismo , Hiperinsulinismo/fisiopatologia , Insulina/administração & dosagem , Pulmão/efeitos dos fármacos , Ventilação Pulmonar/efeitos dos fármacos , Adulto , Biomarcadores/sangue , Feminino , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo/sangue , Insulina/sangue , Pulmão/fisiopatologia , Masculino , Estudos Retrospectivos , Fatores de Tempo
10.
Exp Physiol ; 102(8): 869-884, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605068

RESUMO

NEW FINDINGS: What is the topic of this review? This review highlights the emerging role of disruptions in endoplasmic reticulum (ER) function, namely ER stress, as a contributor to hypertension. What advances does it highlight? This review presents an integrative view of ER stress in cardiovascular control systems, including systems within the brain, kidney and peripheral vasculature, as related to development of hypertension. The endoplasmic reticulum (ER) is a cellular organelle specialized in the synthesis, folding, assembly and modification of proteins. In situations of increased protein demand, complex signalling pathways, termed the unfolded protein response, influence a series of cellular feedback loops to control ER function strictly. Although this is initially a compensatory attempt to maintain cellular homeostasis, chronic activation of the unfolded protein response, known as ER stress, leads to sustained changes in cellular function. A growing body of literature points to ER stress in diverse cardioregulatory systems, including the brain, kidney and vasculature, as central to the development of hypertension. Here, these recent findings from essential and obesity-related forms of hypertension are highlighted in an integrative manner, with discussion of the potential upstream causes and downstream consequences of ER stress. Given that hypertension is a leading medical and socio-economic global challenge, emerging findings suggest that targeting ER stress might represent a viable strategy for the treatment of hypertensive disease.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/fisiologia , Hipertensão/fisiopatologia , Animais , Humanos , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/fisiologia
11.
J Neurosci ; 35(26): 9558-67, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134639

RESUMO

Hypertension induced by angiotensin II (Ang II) is associated with glutamate-dependent dysregulation of the hypothalamic paraventricular nucleus (PVN). Many forms of glutamate-dependent plasticity are mediated by NMDA receptor GluN1 subunit expression and the distribution of functional receptor to the plasma membrane of dendrites. Here, we use a combined ultrastructural and functional analysis to examine the relationship between PVN NMDA receptors and the blood pressure increase induced by chronic infusion of a low dose of Ang II. We report that the increase in blood pressure produced by a 2 week administration of a subpressor dose of Ang II results in an elevation in plasma membrane GluN1 in dendrites of PVN neurons in adult male mice. The functional implications of these observations are further demonstrated by the finding that GluN1 deletion in PVN neurons attenuated the Ang II-induced increases in blood pressure. These results indicate that NMDA receptor plasticity in PVN neurons significantly contributes to the elevated blood pressure mediated by Ang II.


Assuntos
Angiotensina II/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Variância , Animais , Lateralidade Funcional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , N-Metilaspartato/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Pletismografia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Vasoconstritores
12.
Physiol Genomics ; 48(10): 762-770, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614203

RESUMO

Bioluminescence imaging is an effective tool for in vivo investigation of molecular processes. We have demonstrated the applicability of bioluminescence imaging to spatiotemporally monitor gene expression in cardioregulatory brain nuclei during the development of cardiovascular disease, via incorporation of firefly luciferase into living animals, combined with exogenous d-luciferin substrate administration. Nevertheless, d-luciferin uptake into the brain tissue is low, which decreases the sensitivity of bioluminescence detection, particularly when considering small changes in gene expression in tiny central areas. Here, we tested the hypothesis that a synthetic luciferin, cyclic alkylaminoluciferin (CycLuc1), would be superior to d-luciferin for in vivo bioluminescence imaging in cardiovascular brain regions. Male C57B1/6 mice underwent targeted delivery of an adenovirus encoding the luciferase gene downstream of the CMV promoter to the subfornical organ (SFO) or paraventricular nucleus of hypothalamus (PVN), two crucial cardioregulatory neural regions. While bioluminescent signals could be obtained following d-luciferin injection (150 mg/kg), CycLuc1 administration resulted in a three- to fourfold greater bioluminescent emission from the SFO and PVN, at 10- to 20-fold lower substrate concentrations (7.5-15 mg/kg). This CycLuc1-mediated enhancement in bioluminescent emission was evident early following substrate administration (i.e., 6-10 min) and persisted for up to 1 h. When the exposure time was reduced from 60 s to 1,500 ms, minimal signal in the PVN was detectable with d-luciferin, whereas bioluminescent images could be reliably captured with CycLuc1. These findings demonstrate that bioluminescent imaging with the synthetic luciferin CycLuc1 provides an improved physiological genomics tool to investigate molecular events in discrete cardioregulatory brain nuclei.


Assuntos
Benzotiazóis/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Órgão Subfornical/efeitos dos fármacos , Adenoviridae/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Luciferases/metabolismo , Medições Luminescentes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Paraventricular/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Órgão Subfornical/metabolismo
13.
Anal Chem ; 88(4): 2015-20, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879366

RESUMO

In this work, we describe an approach to determine the distance separating a magnetic address from a scanning magnetoresistive sensor, a critical adjustable parameter for certain bioassay analyses where magnetic nanoparticles are used as labels. Our approach is leveraged from the harmonic ratio method (HRM), a method used in the hard drive industry to control the distance separating a magnetoresistive read head from its data platter with nanometer resolution. At the heart of the HRM is an amplitude comparison of a signal's fundamental frequency to that of its harmonics. When the signal is derived from the magnetic field pattern of a periodic array of magnetic addresses, the harmonic ratio contains the information necessary to determine the separation between the address array and the read head. The elegance of the HRM is that there is no need of additional components to the detection platform to determine a separation distance; the streaming "bit signal" contains all the information needed. In this work, we demonstrate that the tenets governing HRM used in the hard drive industry can be applied to the bioanalytical arena where submicrometer to 100 µm separations are required.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química , Biomarcadores/análise , Análise de Fourier , Níquel/química
14.
Am J Physiol Heart Circ Physiol ; 311(5): H1170-H1179, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591221

RESUMO

Despite greater blood pressure reactivity to acute cardiovascular stressors and a higher prevalence of hypertension in type 2 diabetes (T2D) patients, limited information is available regarding arterial baroreflex (ABR) control in T2D. We hypothesized that ABR control of muscle sympathetic nerve activity (MSNA) and heart rate (HR) are attenuated in T2D patients. Seventeen T2D patients (50 ± 2 yr; 31 ± 1 kg/m2), 9 weight-matched controls (WM-CON, 46 ± 2 yr; 32 ± 2 kg/m2) and 10 lean controls (Lean-CON, 49 ± 3 yr; 23 ± 1 kg/m2), underwent bolus infusions of sodium nitroprusside (100 µg) followed 60 s later by phenylephrine (150 µg) and weighted linear regression performed. No group differences in overall sympathetic baroreflex gain were observed (T2D: -2.5 ± 0.3 vs. WM-CON: -2.6 ± 0.2 vs. Lean-CON: -2.7 ± 0.4 arbitrary units·beat·mmHg-1, P > 0.05) or in sympathetic baroreflex gain when derived separately during blood pressure (BP) falls (nitroprusside) and BP rises (phenylephrine). In contrast, overall cardiac baroreflex gain was reduced in T2D patients compared with Lean-CON (T2D: 8.2 ± 1.5 vs. Lean-CON: 15.6 ± 2.9 ms·mmHg-1, P < 0.05) and also tended to be reduced in WM-CON (9.3 ± 1.9 ms·mmHg-1) compared with Lean-CON (P = 0.059). Likewise, during BP rises, cardiac baroreflex gain was reduced in T2D patients and weight-matched controls compared with lean controls (P < 0.05), whereas no group differences were found during BP falls (P > 0.05). Sympathetic and cardiac ABR gains were comparable between normotensive and hypertensive T2D patients (P > 0.05). These findings suggest preserved ABR control of MSNA in T2D patients compared with both obese and lean age-matched counterparts, with a selective impairment in ABR HR control in T2D that may be related to obesity.


Assuntos
Barorreflexo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Nitroprussiato/farmacologia , Obesidade/fisiopatologia , Fenilefrina/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Adulto , Artérias/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Obesidade/complicações
15.
BMC Neurosci ; 17(1): 31, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287721

RESUMO

BACKGROUND: Canine intervertebral disc πherniation causes a naturally-occurring spinal cord injury (SCI) that bears critical similarities to human SCI with respect to both injury pathomechanisms and treatment. As such, it has tremendous potential to enhance our understanding of injury biology and the preclinical evaluation of novel therapies. Currently, there is limited understanding of the role of arachidonic acid metabolites in canine SCI. RESULTS: The CSF concentrations of PLA2 and PGE2 were higher in SCI dogs compared to control dogs (p = 0.0370 and 0.0273, respectively), but CSF LCT4 concentration in SCI dogs was significantly lower than that in control dogs (p < 0.0001). Prostaglandin E2 concentration in the CSF was significantly and positively associated with increased severity of SCI at the time of sampling (p = 0.041) and recovery 42 days post-injury (p = 0.006), as measured by ordinal behavioral scores. CONCLUSION: Arachidonic acid metabolism is altered in dogs with SCI, and these data suggest that these AA metabolites reflect injury severity and recovery, paralleling data from other model systems.


Assuntos
Ácido Araquidônico/líquido cefalorraquidiano , Ácido Araquidônico/metabolismo , Doenças do Cão/líquido cefalorraquidiano , Deslocamento do Disco Intervertebral/veterinária , Traumatismos da Medula Espinal/veterinária , Animais , Biomarcadores/líquido cefalorraquidiano , Dinoprostona/líquido cefalorraquidiano , Doenças do Cão/tratamento farmacológico , Cães , Ensaio de Imunoadsorção Enzimática , Feminino , Deslocamento do Disco Intervertebral/líquido cefalorraquidiano , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/tratamento farmacológico , Leucotrieno C4/líquido cefalorraquidiano , Modelos Lineares , Vértebras Lombares , Masculino , Fosfolipases A2/líquido cefalorraquidiano , Índice de Gravidade de Doença , Traumatismos da Medula Espinal/líquido cefalorraquidiano , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/etiologia , Vértebras Torácicas
16.
Curr Hypertens Rep ; 18(4): 30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26957306

RESUMO

Hypertension affects over 25 % of the population with the incidence continuing to rise, due in part to the growing obesity epidemic. Chronic elevations in sympathetic nerve activity (SNA) are a hallmark of the disease and contribute to elevations in blood pressure through influences on the vasculature, kidney, and heart (i.e., neurogenic hypertension). In this regard, a number of central nervous system mechanisms and neural pathways have emerged as crucial in chronically elevating SNA. However, it is important to consider that "sympathetic signatures" are present, with differential increases in SNA to regional organs that are dependent upon the disease progression. Here, we discuss recent findings on the central nervous system mechanisms and autonomic regulatory networks involved in neurogenic hypertension, in both non-obesity- and obesity-associated hypertension, with an emphasis on angiotensin-II, salt, oxidative and endoplasmic reticulum stress, inflammation, and the adipokine leptin.


Assuntos
Sistema Nervoso Central/fisiopatologia , Hipertensão/fisiopatologia , Angiotensina II/metabolismo , Animais , Pressão Sanguínea , Humanos , Hipertensão/etiologia , Obesidade/complicações , Espécies Reativas de Oxigênio/metabolismo
17.
Emerg Radiol ; 23(5): 521-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27300010

RESUMO

We present the case of a polytrauma patient brought into a military medical treatment facility in Khandahar, Afghanistan, whom on radiographic evaluation was identified to have multiple retained internal radiodensities, some of which resembled projectiles, not immediately obvious as to type, thus by default necessitating the consideration for retained unexploded ordinance. The ensuing analysis ultimately successfully identified the origin of retained radiodensities as inert fragments from a USSR 50/60 steel cored bullet as opposed to unexploded ordinance.


Assuntos
Corpos Estranhos/diagnóstico por imagem , Radiografia Torácica , Traumatismos Torácicos/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Ferimentos por Arma de Fogo/diagnóstico por imagem , Adulto , Afeganistão , Humanos , Masculino , Traumatismo Múltiplo
18.
Am J Physiol Cell Physiol ; 308(10): C803-12, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980014

RESUMO

Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation in the brain circumventricular subfornical organ (SFO) mediate the central hypertensive actions of Angiotensin II (ANG II). However, the downstream signaling events remain unclear. Here we tested the hypothesis that angiotensin type 1a receptors (AT1aR), ER stress, and ROS induce activation of the transcription factor nuclear factor-κB (NF-κB) during ANG II-dependent hypertension. To spatiotemporally track NF-κB activity in the SFO throughout the development of ANG II-dependent hypertension, we used SFO-targeted adenoviral delivery and longitudinal bioluminescence imaging in mice. During low-dose infusion of ANG II, bioluminescence imaging revealed a prehypertensive surge in NF-κB activity in the SFO at a time point prior to a significant rise in arterial blood pressure. SFO-targeted ablation of AT1aR, inhibition of ER stress, or adenoviral scavenging of ROS in the SFO prevented the ANG II-induced increase in SFO NF-κB. These findings highlight the utility of bioluminescence imaging to longitudinally track transcription factor activation during the development of ANG II-dependent hypertension and reveal an AT1aR-, ER stress-, and ROS-dependent prehypertensive surge in NF-κB activity in the SFO. Furthermore, the increase in NF-κB activity before a rise in arterial blood pressure suggests a causal role for SFO NF-κB in the development of ANG II-dependent hypertension.


Assuntos
Angiotensina II/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Hipertensão/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Órgão Subfornical/efeitos dos fármacos , Animais , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
19.
Undersea Hyperb Med ; 42(4): 369-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26403021

RESUMO

This case report presents a military diver who became dysphoric and lost consciousness during a routine surface-supplied dive. The patient regained consciousness spontaneously, but the physical exam was notable for bilateral ophthalmoplegia. Full eye movement was regained during hyperbaric oxygen (HBO2) therapy, and the patient subsequently made a full recovery. Equipment and dive profile analysis led to the conclusion of hypercapnia and arterial gas embolism as the probable causes of the diver's symptoms. This is a unique case of isolated bilateral ophthalmoplegia presenting in a diving injury.


Assuntos
Mergulho/efeitos adversos , Oxigenoterapia Hiperbárica , Oftalmoplegia/terapia , Adulto , Artérias , Embolia Aérea/complicações , Análise de Falha de Equipamento , Humanos , Hipercapnia/complicações , Masculino , Militares , Oftalmoplegia/etiologia , Inconsciência/etiologia
20.
Calcif Tissue Int ; 95(3): 229-39, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25005834

RESUMO

Submariners spend prolonged periods submerged without sunlight exposure and may benefit from vitamin D supplementation to maintain vitamin D status. The primary objective of this study was to determine the efficacy of daily vitamin D supplementation on maintenance of 25-hydroxyvitamin D (25(OH)D) during a 3-month submarine patrol. Submariners were randomly divided into three groups: placebo (n = 16), 1,000 IU/day (n = 20), or 2,000 IU/day (n = 17). Anthropometrics, self-reported dietary calcium and vitamin D intake, serum markers of vitamin D and bone metabolism, and peripheral quantitative computed tomography (pQCT) parameters of the tibia were determined before and after the patrol. Prior to departure, 49 % of the subjects were vitamin D insufficient (<50 nmol/L). Following the patrol, 25(OH)D increased in all groups (p < 0.001): 3.3 ± 13.1 (placebo), 4.6 ± 11.3 (1,000 IU/day), and 13 ± 14 nmol/L (2,000 IU/day). The changes in 25(OH)D levels were dependent upon the baseline concentration of 25(OH)D and body mass (p < 0.001). Osteocalcin increased by 38 % (p < 0.01), and pQCT analyses revealed small, yet significant increases in indices of tibial structure and strength (p < 0.05) that were independent of supplementation. These data suggest that vitamin D status was low prior to the patrol, and the subsequent changes in vitamin D status were dependent on the baseline 25(OH)D levels and body mass. Furthermore, short-term skeletal health does not appear to be negatively affected by 3 months of submergence in spite of a suboptimal response to vitamin D supplementation.


Assuntos
Densidade Óssea/efeitos dos fármacos , Suplementos Nutricionais , Medicina Submarina , Vitamina D/administração & dosagem , Vitaminas/administração & dosagem , Adulto , Relação Dose-Resposta a Droga , Método Duplo-Cego , Humanos , Imunoensaio , Masculino , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA