Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Genomics ; 21(1): 107, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005150

RESUMO

BACKGROUND: Genome-scale pooled CRISPR screens are powerful tools for identifying genetic dependencies across varied cellular processes. The vast majority of CRISPR screens reported to date have focused exclusively on the perturbation of protein-coding gene function. However, protein-coding genes comprise < 2% of the sequence space in the human genome leaving a substantial portion of the genome uninterrogated. Noncoding regions of the genome harbor important regulatory elements (e.g. promoters, enhancers, silencers) that influence cellular processes but high-throughput methods for evaluating their essentiality have yet to be established. RESULTS: Here, we describe a CRISPR-based screening approach that facilitates the functional profiling of thousands of noncoding regulatory elements in parallel. We selected the tumor suppressor p53 as a model system and designed a pooled CRISPR library targeting thousands of p53 binding sites throughout the genome. Following transduction into dCas9-KRAB-expressing cells we identified several regulatory elements that influence cell proliferation. Moreover, we uncovered multiple elements that are required for the p53-mediated DNA damage response. Surprisingly, many of these elements are located deep within intergenic regions of the genome that have no prior functional annotations. CONCLUSIONS: This work diversifies the applications for pooled CRISPR screens and provides a framework for future functional studies focused on noncoding regulatory elements.


Assuntos
Sistemas CRISPR-Cas , Neoplasias/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Inativação de Genes , Genoma Humano , Humanos , Elementos Reguladores de Transcrição , Proteína Supressora de Tumor p53/metabolismo
2.
Mol Med ; 26(1): 117, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238891

RESUMO

Approximately 400 million people throughout the world suffer from a rare disease. Although advances in whole exome and whole genome sequencing have greatly facilitated rare disease diagnosis, overall diagnostic rates remain below 50%. Furthermore, in cases where accurate diagnosis is achieved the process requires an average of 4.8 years. Reducing the time required for disease diagnosis is among the most critical needs of patients impacted by a rare disease. In this perspective we describe current challenges associated with rare disease diagnosis and discuss several cutting-edge functional genomic screening technologies that have the potential to rapidly accelerate the process of distinguishing pathogenic variants that lead to disease.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Genômica , Doenças Raras/diagnóstico , Doenças Raras/genética , Biomarcadores , Estudos de Associação Genética/métodos , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos , Fenótipo
3.
Nucleic Acids Res ; 45(17): 9889-9900, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973438

RESUMO

The tumor suppressor p53 is a well-characterized transcription factor that can bind gene promoters and regulate target gene transcription in response to DNA damage. Recent studies, however, have revealed that p53 binding events occur predominantly within regulatory enhancer elements. The effect of p53 binding on enhancer function has not been systematically evaluated. Here, we perform a genome-scale analysis of enhancer activity from p53-bound sequences using a series of massively parallel reporter assays (MPRAs) coupled with the assay for transposase-accessible chromatin (ATAC-Seq). We find that the majority of sequences examined display p53-dependent enhancer activity during the DNA damage response. Furthermore, we observe that p53 is bound to enhancer elements in healthy fibroblasts and poised for rapid activation in response to DNA damage. Surprisingly, our analyses revealed that most p53-bound enhancers are located within regions of inaccessible chromatin. A large subset of these enhancers become accessible following DNA damage indicating that p53 regulates their activity, in part, by modulating chromatin accessibility. The recognition and activation of enhancer elements located within inaccessible chromatin may contribute to the ability of the p53 network to function across the diverse chromatin landscapes of different tissues and cell types.


Assuntos
Cromatina/química , Dano ao DNA , Elementos Facilitadores Genéticos , Fibroblastos/metabolismo , Proteína Supressora de Tumor p53/genética , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Doxorrubicina/toxicidade , Feto , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Motivos de Nucleotídeos , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismo
4.
Nat Methods ; 12(7): 664-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26030444

RESUMO

Noncoding RNAs play diverse roles throughout biology and exhibit broad functional capacity. To investigate and harness these capabilities, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-Display (CRISP-Disp), a targeted localization method that uses Cas9 to deploy large RNA cargos to DNA loci. We demonstrate that functional RNA domains up to at least 4.8 kb long can be inserted in CRISPR guide RNA at multiple points, allowing the construction of Cas9 complexes with protein-binding cassettes, artificial aptamers, pools of random sequences and natural long noncoding RNAs. A unique feature of CRISP-Disp is the multiplexing of distinct functions at multiple targets, limited only by the availability of functional RNA motifs. We anticipate the use of CRISP-Disp for ectopically targeting functional RNAs and ribonucleoprotein (RNP) complexes to genomic loci.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Longo não Codificante/fisiologia , Sequência de Bases , Células HEK293 , Humanos , Dados de Sequência Molecular
5.
Nucleic Acids Res ; 43(9): 4447-62, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25883152

RESUMO

The tumor suppressor p53 has been studied extensively as a direct transcriptional activator of protein-coding genes. Recent studies, however, have shed light on novel regulatory functions of p53 within noncoding regions of the genome. Here, we use a systematic approach that integrates transcriptome-wide expression analysis, genome-wide p53 binding profiles and chromatin state maps to characterize the global regulatory roles of p53 in response to DNA damage. Notably, our approach identified conserved features of the p53 network in both human and mouse primary fibroblast models. In addition to known p53 targets, we identify many previously unappreciated mRNAs and long noncoding RNAs that are regulated by p53. Moreover, we find that p53 binding occurs predominantly within enhancers in both human and mouse model systems. The ability to modulate enhancer activity offers an additional layer of complexity to the p53 network and greatly expands the diversity of genomic elements directly regulated by p53.


Assuntos
Dano ao DNA , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Fibroblastos/metabolismo , Genômica , Humanos , Camundongos , Proteínas/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo
6.
Nucleic Acids Res ; 39(13): 5682-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21427083

RESUMO

Synthetic small duplex RNAs that are fully complementary to gene promoters can silence transcription in mammalian cells. microRNAs (miRNAs) are endogenous small regulatory RNAs that sequence specifically regulate gene expression. We have developed a computational method to identify potential miRNA target sites within gene promoters. Ten candidate miRNAs predicted to target the human progesterone receptor (PR) gene promoter were tested for their ability to modulate gene expression. Several miRNA mimics inhibited PR gene expression and miR-423-5p, which targets a highly conserved region of the PR promoter, was chosen for detailed analysis. Chromatin immunoprecipitation revealed that the miR-423-5p mimic decreased RNA polymerase II occupancy and increased histone H3 lysine 9 dimethylation (H3K9me2) at the PR promoter, indicative of chromatin-level silencing. Transcriptional silencing was transient, independent of DNA methylation, and associated with recruitment of Argonaute 2 (AGO2) to a non-coding RNA (ncRNA) transcript that overlaps the PR gene promoter. The miR-423-5p mimic also silenced expression of immunoglobulin superfamily member 1 (IGSF1), an additional gene with a predicted target site within its promoter. While additional investigations of endogenous miRNA function will be necessary, these observations suggest that recognition of gene promoters by miRNAs may be a natural and general mechanism for regulating gene transcription.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Linhagem Celular Tumoral , Humanos , MicroRNAs/química , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Análise de Sequência de DNA
8.
Nat Commun ; 14(1): 3090, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248219

RESUMO

Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.


Assuntos
Metilação de DNA , Doenças Raras , Humanos , Haplótipos , Doenças Raras/genética , Metilação de DNA/genética , Análise de Sequência de DNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Tecido Nervoso/genética
9.
Nat Chem Biol ; 6(8): 621-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20581822

RESUMO

Transcriptome studies reveal many noncoding transcripts overlapping 3' gene termini. The function of these transcripts is unknown. Here we have characterized transcription at the progesterone receptor (PR) locus and identified noncoding transcripts that overlap the 3' end of the gene. Small RNAs complementary to sequences beyond the 3' terminus of PR mRNA modulated expression of PR, recruited argonaute 2 to a 3' noncoding transcript, altered occupancy of RNA polymerase II, induced chromatin changes at the PR promoter and affected responses to physiological stimuli. We found that the promoter and 3' terminal regions of the PR locus are in close proximity, providing a potential mechanism for RNA-mediated control of transcription over long genomic distances. These results extend the potential for small RNAs to regulate transcription to target sequences beyond the 3' termini of mRNA.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica/fisiologia , RNA Citoplasmático Pequeno/fisiologia , Regiões 3' não Traduzidas/fisiologia , Regiões 5' não Traduzidas/genética , Proteína BRCA1/biossíntese , Proteína BRCA1/genética , Linhagem Celular , Cromatina/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Perfilação da Expressão Gênica , Marcação de Genes , Humanos , Conformação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
10.
Nucleic Acids Res ; 38(21): 7736-48, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20675357

RESUMO

Double-stranded RNAs that are complementary to non-coding transcripts at gene promoters can activate or inhibit gene expression in mammalian cells. Understanding the mechanism for modulating gene expression by promoter-targeted antigene RNAs (agRNAs) will require identification of the proteins involved in recognition. Previous reports have implicated argonaute (AGO) proteins, but identifications have differed with involvement of AGO1, AGO2, or both AGO1 and AGO2 being reported by different studies. The roles of AGO3 and AGO4 have not been investigated. Here, we examine the role of AGO 1-4 in gene silencing and activation of the progesterone receptor (PR) gene. Expression of AGO2 is necessary for efficient gene silencing or activation and AGO2 is recruited to the non-coding transcript that overlaps the promoter during both gene silencing and activation. Expression of AGO1, AGO3 and AGO4 are not necessary for gene silencing or activation nor are AGO1, AGO3, or AGO4 recruited to the target non-coding transcript during gene activation. These data indicate that AGO2 is the primary AGO variant involved in modulating expression of PR by agRNAs.


Assuntos
Inativação Gênica , RNA Antissenso/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/fisiologia , Receptores de Progesterona/genética , Ativação Transcricional , Linhagem Celular , Núcleo Celular/química , Humanos , Regiões Promotoras Genéticas , RNA Antissenso/análise , RNA não Traduzido/análise , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo
11.
Sci Rep ; 12(1): 7576, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534523

RESUMO

Clinical whole genome sequencing has enabled the discovery of potentially pathogenic noncoding variants in the genomes of rare disease patients with a prior history of negative genetic testing. However, interpreting the functional consequences of noncoding variants and distinguishing those that contribute to disease etiology remains a challenge. Here we address this challenge by experimentally profiling the functional consequences of rare noncoding variants detected in a cohort of undiagnosed rare disease patients at scale using a massively parallel reporter assay. We demonstrate that this approach successfully identifies rare noncoding variants that alter the regulatory capacity of genomic sequences. In addition, we describe an integrative analysis that utilizes genomic features alongside patient clinical data to further prioritize candidate variants with an increased likelihood of pathogenicity. This work represents an important step towards establishing a framework for the functional interpretation of clinically detected noncoding variants.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Genoma , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma
12.
Cancer Discov ; 12(2): 432-449, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34531254

RESUMO

CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Leucemia Mieloide Aguda/tratamento farmacológico , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Leucemia Mieloide Aguda/genética
13.
Front Cell Dev Biol ; 9: 657662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017833

RESUMO

The innate immune response of pulmonary endothelial cells (EC) to lipopolysaccharide (LPS) induces Forkhead box protein C2 (FOXC2) activation through Toll Like Receptor 4 (TLR4). The mechanisms by which FOXC2 expression is regulated in lung EC under LPS stimulation remain unclear. We postulated that FOXC2 regulates its own expression in sepsis, and its transcriptional autoregulation directs lymphatic EC cell-fate decision. Bioinformatic analysis identified potential FOXC2 binding sites in the FOXC2 promoter. In human lung EC, we verified using chromatin immunoprecipitation (ChIP) and luciferase assays that FOXC2 bound to its own promoter and stimulated its expression after LPS stimulation. Chemical inhibition of histone acetylation by garcinol repressed LPS-induced histone acetylation in the FOXC2 promoter region, and disrupted LPS-mediated FOXC2 binding and transcriptional activation. CRISPR/dCas9/gRNA directed against FOXC2-binding-element (FBE) suppressed LPS-stimulated FOXC2 binding and autoregulation by blocking FBEs in the FOXC2 promoter, and repressed expression of lymphatic EC markers. In a neonatal mouse model of sterile sepsis, LPS-induced FOXC2 binding to FBE and FOXC2 expression in lung EC was attenuated with garcinol treatment. These data reveal a new mechanism of LPS-induced histone acetylation-dependent FOXC2 autoregulation.

14.
Cell Rep ; 36(4): 109443, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34320363

RESUMO

Metastasis is a complex and poorly understood process. In pancreatic cancer, loss of the transforming growth factor (TGF)-ß/BMP effector SMAD4 is correlated with changes in altered histopathological transitions, metastatic disease, and poor prognosis. In this study, we use isogenic cancer cell lines to identify SMAD4 regulated genes that contribute to the development of metastatic colonization. We perform an in vivo screen identifying FOSL1 as both a SMAD4 target and sufficient to drive colonization to the lung. The targeting of these genes early in treatment may provide a therapeutic benefit.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteína Smad4/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Elementos Facilitadores Genéticos/genética , Humanos , Camundongos , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Pancreáticas
15.
Cancer Discov ; 11(9): 2282-2299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33883167

RESUMO

Cancer dependency maps, which use CRISPR/Cas9 depletion screens to profile the landscape of genetic dependencies in hundreds of cancer cell lines, have identified context-specific dependencies that could be therapeutically exploited. An ideal therapy is both lethal and precise, but these depletion screens cannot readily distinguish between gene effects that are cytostatic or cytotoxic. Here, we use a diverse panel of functional genomic screening assays to identify NXT1 as a selective and rapidly lethal in vivo relevant genetic dependency in MYCN-amplified neuroblastoma. NXT1 heterodimerizes with NXF1, and together they form the principal mRNA nuclear export machinery. We describe a previously unrecognized mechanism of synthetic lethality between NXT1 and its paralog NXT2: their common essential binding partner NXF1 is lost only in the absence of both. We propose a potential therapeutic strategy for tumor-selective elimination of a protein that, if targeted directly, is expected to cause widespread toxicity. SIGNIFICANCE: We provide a framework for identifying new therapeutic targets from functional genomic screens. We nominate NXT1 as a selective lethal target in neuroblastoma and propose a therapeutic approach where the essential protein NXF1 can be selectively eliminated in tumor cells by exploiting the NXT1-NXT2 paralog relationship.See related commentary by Wang and Abdel-Wahab, p. 2129.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Neoplasias/tratamento farmacológico , Proteínas de Transporte Nucleocitoplasmático/genética , Linhagem Celular Tumoral , Humanos , Neoplasias/genética
16.
Cancer Discov ; 11(6): 1398-1410, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33579786

RESUMO

The myeloproliferative neoplasms (MPN) frequently progress to blast phase disease, an aggressive form of acute myeloid leukemia. To identify genes that suppress disease progression, we performed a focused CRISPR/Cas9 screen and discovered that depletion of LKB1/Stk11 led to enhanced in vitro self-renewal of murine MPN cells. Deletion of Stk11 in a mouse MPN model caused rapid lethality with enhanced fibrosis, osteosclerosis, and an accumulation of immature cells in the bone marrow, as well as enhanced engraftment of primary human MPN cells in vivo. LKB1 loss was associated with increased mitochondrial reactive oxygen species and stabilization of HIF1α, and downregulation of LKB1 and increased levels of HIF1α were observed in human blast phase MPN specimens. Of note, we observed strong concordance of pathways that were enriched in murine MPN cells with LKB1 loss with those enriched in blast phase MPN patient specimens, supporting the conclusion that STK11 is a tumor suppressor in the MPNs. SIGNIFICANCE: Progression of the myeloproliferative neoplasms to acute myeloid leukemia occurs in a substantial number of cases, but the genetic basis has been unclear. We discovered that loss of LKB1/STK11 leads to stabilization of HIF1a and promotes disease progression. This observation provides a potential therapeutic avenue for targeting progression.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Genes Supressores de Tumor , Leucemia Mieloide Aguda/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Transtornos Mieloproliferativos/genética
17.
Chembiochem ; 10(7): 1135-9, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19301312

RESUMO

Setting the right target: Most researchers who use small RNAs in mammalian cells assume that mRNA will be the target. Recent studies suggest that small RNAs can also target chromosomal DNA. Few discoveries have had the impact of RNAi. Most researchers who use small RNAs to control gene expression in mammalian cells assume that mRNA will be the target. Recent studies, however, have suggested that small RNAs can also target chromosomal DNA.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA de Cadeia Dupla/metabolismo , RNA não Traduzido/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo
18.
Bioorg Med Chem Lett ; 19(14): 3791-4, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19423343

RESUMO

Synthetic small duplex RNAs that are complementary to gene promoters can activate or inhibit target gene expression. The potency and robustness of gene modulation by these RNAs suggests that natural mechanisms may exist to facilitate recognition of sequences within gene promoters by endogenous small RNAs. Here, we describe computational methods for identifying potential miRNA target sites within gene promoters. These methods will facilitate investigations of whether miRNAs interact with sequences outside of 3'-untranslated regions and suggest new targets for the design of synthetic modulators of gene expression.


Assuntos
MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Regiões 3' não Traduzidas , Sequência de Bases , Biologia Computacional , Expressão Gênica , MicroRNAs/química
19.
Nat Commun ; 10(1): 5817, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862961

RESUMO

Genome-scale CRISPR-Cas9 viability screens performed in cancer cell lines provide a systematic approach to identify cancer dependencies and new therapeutic targets. As multiple large-scale screens become available, a formal assessment of the reproducibility of these experiments becomes necessary. We analyze data from recently published pan-cancer CRISPR-Cas9 screens performed at the Broad and Sanger Institutes. Despite significant differences in experimental protocols and reagents, we find that the screen results are highly concordant across multiple metrics with both common and specific dependencies jointly identified across the two studies. Furthermore, robust biomarkers of gene dependency found in one data set are recovered in the other. Through further analysis and replication experiments at each institute, we show that batch effects are driven principally by two key experimental parameters: the reagent library and the assay length. These results indicate that the Broad and Sanger CRISPR-Cas9 viability screens yield robust and reproducible findings.


Assuntos
Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genômica/métodos , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Genes Essenciais/efeitos dos fármacos , Genes Essenciais/genética , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Oncogenes/efeitos dos fármacos , Oncogenes/genética , Medicina de Precisão/métodos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
20.
Cell Metab ; 29(5): 1166-1181.e6, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799286

RESUMO

Cells are subjected to oxidative stress during the initiation and progression of tumors, and this imposes selective pressure for cancer cells to adapt mechanisms to tolerate these conditions. Here, we examined the dependency of cancer cells on glutathione (GSH), the most abundant cellular antioxidant. While cancer cell lines displayed a broad range of sensitivities to inhibition of GSH synthesis, the majority were resistant to GSH depletion. To identify cellular pathways required for this resistance, we carried out genetic and pharmacologic screens. Both approaches revealed that inhibition of deubiquitinating enzymes (DUBs) sensitizes cancer cells to GSH depletion. Inhibition of GSH synthesis, in combination with DUB inhibition, led to an accumulation of polyubiquitinated proteins, induction of proteotoxic stress, and cell death. These results indicate that depletion of GSH renders cancer cells dependent on DUB activity to maintain protein homeostasis and cell viability and reveal a potentially exploitable vulnerability for cancer therapy.


Assuntos
Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Enzimas Desubiquitinantes/metabolismo , Glutationa/metabolismo , Proteostase/efeitos dos fármacos , Células A549 , Aminopiridinas/farmacologia , Animais , Butionina Sulfoximina/farmacologia , Domínio Catalítico/efeitos dos fármacos , Enzimas Desubiquitinantes/antagonistas & inibidores , Feminino , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutamato-Cisteína Ligase/química , Glutamato-Cisteína Ligase/metabolismo , Humanos , Células MCF-7 , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Organoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tiocianatos/farmacologia , Carga Tumoral/efeitos dos fármacos , Proteínas Ubiquitinadas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA