Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(13): 135002, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745432

RESUMO

Recent experiments on Sandia's Z facility have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from an electrothermal instability. These results provide further evidence that the inherent surface roughness as a result of target fabrication is not the dominant seed for the growth of magneto-Rayleigh-Taylor instabilities in liners with carefully machined smooth surfaces, but rather electrothermal instabilities that form early in the electrical current pulse as Joule heating melts and vaporizes the liner surface. These results suggest a new technique for substantially reducing the integral magneto-Rayleigh-Taylor instability growth in magnetically driven implosions, such as cylindrical dynamic material experiments and inertial confinement fusion concepts.

2.
Phys Rev E ; 109(6-2): 065202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39020971

RESUMO

Magnetohydrodynamic (MHD) simulations of electrically exploded aluminum and copper rods demonstrate a technique to validate equations of state (EOS) for rapidly Joule-heated conductors. The balance of internal and magnetic forces at the conductor-insulator interface drives the metal there along the vaporization phase boundary. Variations between critical points and vaporization curves in existing models predict differing densities and temperatures in MHD simulations for these models. The inclusion of Maxwell constructs in the liquid-vapor biphase region of the EOS caused the rod surface to vaporize earlier in time than unmodified tables with van der Waals loops. Velocimetry of recent experiments is used to validate the location of the vaporization curve in existing EOS models and differentiate between the vapor dome treatments. Dielectric coatings applied to the metal surface restricted the conductor's expansion and diverted the metal into the warm dense matter regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA