Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2219231120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399389

RESUMO

Real-time monitoring of various neurochemicals with high spatial resolution in multiple brain regions in vivo can elucidate neural circuits related to various brain diseases. However, previous systems for monitoring neurochemicals have limitations in observing multiple neurochemicals without crosstalk in real time, and these methods cannot record electrical activity, which is essential for investigating neural circuits. Here, we present a real-time bimodal (RTBM) neural probe that uses monolithically integrated biosensors and multiple shanks to study the connectivity of neural circuits by measuring multiple neurochemicals and electrical neural activity in real time. Using the RTBM probe, we demonstrate concurrent measurements of four neurochemicals-glucose, lactate, choline, and glutamate without cross-talking each other-and electrical activity in real time in vivo. Additionally, we show the functional connectivity between the medial prefrontal cortex and mediodorsal thalamus through the simultaneous measurement of chemical and electrical signals. We expect that our device will contribute to not only elucidating the role of neurochemicals in neural circuits related to brain functions but also developing drugs for various brain diseases related to neurochemicals.


Assuntos
Encefalopatias , Encéfalo , Humanos , Encéfalo/fisiologia , Fenômenos Eletrofisiológicos , Ácido Glutâmico , Eletrofisiologia
2.
Small ; 20(19): e2309467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38100229

RESUMO

Electrolyte-gated transistors have strong potential for high-performance artificial synapses in neuromorphic bio-interfaces owing to their outstanding synaptic characteristics, low power consumption, and human-like mechanisms. However, the short retention time is a hurdle to overcome owing to the natural diffusion of protons. Here, a novel modulation technique of ionic conductivity is proposed with yttria-stabilized hafnia for the first time to enhance the retention characteristic of a solid-state electrolyte-gated transistor-based artificial synapse. With the optimization of the ionic conductivity in yttria-stabilized hafnia, a high retention time of over 300 s and remarkable synaptic characteristics are accomplished by regulating channel conductance with precise modulation of the strength of the proton-electron coupling intensity along the input signals. Furthermore, pattern recognition simulation is conducted based on the measured synaptic characteristics, exhibiting 94.41% of operation accuracy, which implies a promising solution for neuromorphic in-memory computing systems with a high operation accuracy and low power consumption.

3.
Small ; 17(30): e2100242, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34114332

RESUMO

Presently, the 3-terminal artificial synapse device has been in focus for neuromorphic computing systems owing to its excellent weight controllability. Here, an artificial synapse device based on the 3-terminal solid-state electrolyte-gated transistor is proposed to achieve outstanding synaptic characteristics with a human-like mechanism at low power. Novel synaptic characteristics are accomplished by precisely tuning the threshold voltage using the proton-electron coupling effect, which is caused by proton migration inside the electrolyte. However, these synaptic characteristics are degraded because traps at the interface of channel/electrolyte disturb the proton-electron coupling effect. To minimize degradation, the oxygen plasma treatment is performed to reduce interface traps. As a result, symmetric weight updates and outstanding synaptic characteristics are achieved. Furthermore, high repeatability and long-term plasticity are observed at low operating power, which is essential for artificial synapses. Therefore, this study shows the progress of artificial synapses and proposes a promising method, a low-power neuromorphic system, to achieve high accuracy.


Assuntos
Elétrons , Prótons , Eletrólitos , Humanos , Sinapses
4.
Small ; 16(49): e2004371, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33205614

RESUMO

2D semiconductor-based ferroelectric field effect transistors (FeFETs) have been considered as a promising artificial synaptic device for implementation of neuromorphic computing systems. However, an inevitable problem, interface traps at the 2D semiconductor/ferroelectric oxide interface, suppresses ferroelectric characteristics, and causes a critical degradation on the performance of 2D-based FeFETs. Here, hysteresis modulation method using self-assembly monolayer (SAM) material for interface trap passivation on 2D-based FeFET is presented. Through effectively passivation of interface traps by SAM layer, the hysteresis of the proposed device changes from interface traps-dependent to polarization-dependent direction. The reduction of interface trap density is clearly confirmed through the result of calculation using the subthreshold swing of the device. Furthermore, excellent optic-neural synaptic characteristics are successfully implemeted, including linear and symmetric potentiation and depression, and multilevel conductance. This work identifies the potential of passivation effect for 2D-based FeFETs to accelerate the development of neuromorphic computing systems.


Assuntos
Redes Neurais de Computação , Transistores Eletrônicos , Óxidos , Semicondutores
5.
Opt Lett ; 41(16): 3686-9, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519063

RESUMO

In this study, we proposed germanium (Ge) metal-interlayer-semiconductor-metal (MISM) photodiodes (PD), with an anode of a metal-interlayer-semiconductor (MIS) contact and a cathode of a metal-semiconductor (MS) contact, to efficiently suppress the dark current of Ge PD. We selected titanium dioxide (TiO2) as an interlayer material for the MIS contact, due to its large valence band offset and negative conduction band offset to Ge. We significantly suppress the dark current of Ge PD by introducing the MISM structure with a TiO2 interlayer, as this enhances the hole Schottky barrier height, and thus acts as a large barrier for holes. In addition, it collects photo-generated carriers without degradation, due to its negative conduction band offset to Ge. This reduces the dark current of Ge MISM PDs by ×8000 for 7-nm-thick TiO2 interlayer, while its photo current is still comparable to that of Ge metal-semiconductor-metal (MSM) PDs. Furthermore, the proposed Ge PD shows ×6,600 improvement of the normalized photo-to-dark-current ratio (NPDR) at a wavelength of 1.55 µm. The proposed Ge MISM PD shows considerable promise for low power and high sensitivity Ge-based optoelectronic applications.

6.
Nano Lett ; 15(7): 4553-6, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103511

RESUMO

Because of the "Boltzmann tyranny" (i.e., the nonscalability of thermal voltage), a certain minimum gate voltage in metal-oxide-semiconductor (MOS) devices is required for a 10-fold increase in drain-to-source current. The subthreshold slope (SS) in MOS devices is, at best, 60 mV/decade at 300 K. Negative capacitance in organic/ferroelectric materials is proposed in order to address this physical limitation in MOS technology. Here, we experimentally demonstrate the steep switching behavior of a MOS device-that is, SS ∼ 18 mV/decade (much less than 60 mV/decade) at 300 K-by taking advantage of negative capacitance in a MOS gate stack. This negative capacitance, originating from the dynamics of the stored energy in a phase transition of a ferroelectric material, can achieve the step-up conversion of internal voltage (i.e., internal voltage amplification in a MOS device). With the aid of a series-connected negative capacitor as an assistive device, the surface potential in the MOS device becomes higher than the applied gate voltage, so that a SS of 18 mV/decade at 300 K is reliably observed.

7.
Opt Lett ; 39(14): 4204-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121687

RESUMO

In this Letter, we report Ge p-i-n avalanche photodetectors (APD) with low dark current (sub 1 µA below V(R)=5 V), low operating voltage (avalanche breakdown voltage=8-13 V), and high multiplication gain (440-680) by exploiting a point defect healing method (between 600°C and 650°C) and optimizing the doping concentration of the intrinsic region (p-type ~10¹7 cm⁻³). In addition, Raman spectroscopy and electrochemical capacitance voltage analyses were performed to investigate the junction interfaces in more detail. This successful demonstration of Ge p-i-n APD with low dark current, low operating voltage, and high gain is promising for low-power and high-sensitivity Ge PD applications.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38033204

RESUMO

Optimizing the contact structure while reducing the contact resistance in advanced transistors has become an extremely challenging problem. Because the existing techniques are limited to controlling only one semiconductor type, either n- or p-type, owing to their work function differences, significant challenges are encountered in the integration of a contact structure and metal suitable for both n- and p-type semiconductors. This is a formidable drawback of the complementary metal-oxide-semiconductor (CMOS) technology. In this paper, we demonstrate the effectiveness of a metal/graphene/semiconductor (MGrS) as a universal source/drain contact structure for both n- and p-type transistors. The MGrS contact structure significantly enhanced the reverse current density (JR) and reduced the Schottky barrier height (SBH) for both semiconductor types. From the analysis of the SBH values and their relationship with the metal work function, which refers to the S-parameter, the van der Waals contact of graphene (Gr) effectively alleviated the Fermi level (FL) pinning for both semiconductor types, reducing the metal-induced gap states (MIGS) at the Gr/semiconductor interface. Furthermore, Gr effectively modulated the work function of the contact metal to yield a position favorable for each semiconductor type. Consequently, a single MGrS contact structure on a Si substrate resulted in excellent Ohmic contacts in both n- and p-type Si, with SBH values reduced to 0.012 and 0.024 eV for n- and p-type Si, respectively. This new approach for integrating the contact structures of semiconductor types will lead to extended capabilities for high-performance device applications and CMOS logical circuitry.

9.
ACS Appl Mater Interfaces ; 15(26): 31608-31616, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339325

RESUMO

Negative differential resistance (NDR) based on the band-to-band tunneling (BTBT) mechanism has recently shown great potential in improving the performance of various electronic devices. However, the applicability of conventional BTBT-based NDR devices is restricted by their insufficient performance due to the limitations of the NDR mechanism. In this study, we develop an insulator-to-metal phase transition (IMT)-based NDR device that exploits the abrupt resistive switching of vanadium dioxide (VO2) to achieve a high peak-to-valley current ratio (PVCR) and peak current density (Jpeak) as well as controllable peak and valley voltages (Vpeak/valley). When a phase transition is induced in VO2, the effective voltage bias on the two-dimensional channel is decreased by the reduction in the VO2 resistance. Accordingly, the effective voltage adjustment induced by the IMT results in an abrupt NDR. This NDR mechanism based on the abrupt IMT results in a maximum PVCR of 71.1 through its gate voltage and VO2 threshold voltage tunability characteristics. Moreover, Vpeak/valley is easily modulated by controlling the length of VO2. In addition, a maximum Jpeak of 1.6 × 106 A/m2 is achieved through light-tunable characteristics. The proposed IMT-based NDR device is expected to contribute to the development of various NDR devices for next-generation electronics.

10.
Opt Express ; 20(7): 7608-15, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453440

RESUMO

Single crystal Silicon-Germanium multi-quantum well layers were epitaxially grown on silicon substrates. Very high quality films were achieved with high level of control utilizing recently developed MHAH epitaxial technique. MHAH growth technique facilitates the monolithic integration of photonic functionality such as modulators and photodetectors with low-cost silicon VLSI technology. Mesa structured p-i-n photodetectors were fabricated with low reverse leakage currents of ~10 mA/cm² and responsivity values exceeding 0.1 A/W. Moreover, the spectral responsivity of fabricated detectors can be tuned by applied voltage.


Assuntos
Germânio/química , Fotometria/instrumentação , Silício/química , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Germânio/efeitos da radiação , Raios Infravermelhos , Silício/efeitos da radiação
11.
Opt Lett ; 36(7): 1182-4, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479023

RESUMO

In this work, suppression of the dark current level in a metal-semiconductor-metal (MSM) photodetector fabricated on the intrinsic (i) Ge is achieved by exploiting (1) the Er electrode, providing a relatively high hole barrier, and (2) the concept of asymmetric electrode area, to minimize the Schottky barrier height lowering effect. Compared with a symmetric MSM photodetector fabricated with Ti electrodes, the dark current level was reduced by a factor of about 80. This low dark current i-Ge MSM photodetector is promising for applications requiring low power and a high photo-to-dark-current ratio.

12.
Adv Sci (Weinh) ; 8(12): 2100208, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34194944

RESUMO

For next-generation electronics and optoelectronics, 2D-layered nanomaterial-based field effect transistors (FETs) have garnered attention as promising candidates owing to their remarkable properties. However, their subthreshold swings (SS) cannot be lower than 60 mV/decade owing to the limitation of the thermionic carrier injection mechanism, and it remains a major challenge in 2D-layered nanomaterial-based transistors. Here, a gate-connected MoS2 atomic threshold switching FET using a nitrogen-doped HfO2-based threshold switching (TS) device is developed. The proposed device achieves an extremely low SS of 11 mV/decade and a high on-off ratio of ≈106 by maintaining a high on-state drive current due to the steep switching of the TS device at the gate region. In particular, the proposed device can function as an infrared detectable phototransistor with excellent optical properties. The proposed device is expected to pave the way for the development of future 2D channel-based electrical and optical transistors.

13.
Lab Chip ; 21(12): 2383-2397, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33955442

RESUMO

The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.e., a minimally invasive, polyimide-based flexible array of electrodes that can enable the recording of ECoG signals in multiple regions of the brain with minimal exposure of the surface of the brain. Magnetic force-assisted positioning of a flexible electrode array enables recording from distant brain regions with a small cranial window. Also, a biodegradable organic compound used for attaching a magnet on the electrodes allows simple retrieval of the magnet. We demonstrate with an in vivo chronic recording that an implanted ECoG electrode array can record ECoG signals from the visual cortex and the motor cortex during a rat's free behavior. Our results indicate that the proposed device induced minimal damage to the animal. We expect the proposed device to be utilized for experiments for large-scale brain circuit analyses as well as clinical applications for intra-operative monitoring of epileptic activity.


Assuntos
Eletrocorticografia , Eletroencefalografia , Animais , Encéfalo , Mapeamento Encefálico , Eletrodos Implantados , Ratos
14.
Biosens Bioelectron ; 191: 113473, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237704

RESUMO

Investigation of the chemical and electrical signals of cells in vivo is critical for studying functional connectivity and brain diseases. Most previous studies have observed either the electrical signals or the chemical signals of cells because recording electrical signals and neurochemicals are done by fundamentally different methods. Herein, we present a bimodal MEMS neural probe that is monolithically integrated with an array of microelectrodes for recording electrical activity, microfluidic channels for sampling extracellular fluid, and a microfluidic interface chip for multiple drug delivery and sample isolation from the localized region at the cellular level. In this work, we successfully demonstrated the functionality of our probe by monitoring and modulating bimodal (electrical and chemical) neural activities through the delivery of chemicals in a co-localized brain region in vivo. We expect our bimodal probe to provide opportunities for a variety of in-depth studies of brain functions as well as for the investigation of neural circuits related to brain diseases.


Assuntos
Técnicas Biossensoriais , Encéfalo , Sistemas de Liberação de Medicamentos , Microeletrodos , Microfluídica
15.
Nanoscale Horiz ; 5(4): 654-662, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32226980

RESUMO

For increasing the restricted bit-density in the conventional binary logic system, extensive research efforts have been directed toward implementing single devices with a two threshold voltage (VTH) characteristic via the single negative differential resistance (NDR) phenomenon. In particular, recent advances in forming van der Waals (vdW) heterostructures with two-dimensional crystals have opened up new possibilities for realizing such NDR-based tunneling devices. However, it has been challenging to exhibit three VTH through the multiple-NDR (m-NDR) phenomenon in a single device even by using vdW heterostructures. Here, we show the m-NDR device formed on a BP/(ReS2 + HfS2) type-III double-heterostructure. This m-NDR device is then integrated with a vdW transistor to demonstrate a ternary vdW latch circuit capable of storing three logic states. Finally, the ternary latch is extended toward ternary SRAM, and its high-speed write and read operations are theoretically verified.

16.
Materials (Basel) ; 13(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630791

RESUMO

The discovery of ferroelectricity in HfO2-based materials in 2011 provided new research directions and opportunities. In particular, for atomic layer deposited Hf0.5Zr0.5O2 (HZO) films, it is possible to obtain homogenous thin films with satisfactory ferroelectric properties at a low thermal budget process. Based on experiment demonstrations over the past 10 years, it is well known that HZO films show excellent ferroelectricity when sandwiched between TiN top and bottom electrodes. This work reports a comprehensive study on the effect of TiN top and bottom electrodes on the ferroelectric properties of HZO thin films (10 nm). Investigations showed that during HZO crystallization, the TiN bottom electrode promoted ferroelectric phase formation (by oxygen scavenging) and the TiN top electrode inhibited non-ferroelectric phase formation (by stress-induced crystallization). In addition, it was confirmed that the TiN top and bottom electrodes acted as a barrier layer to hydrogen diffusion into the HZO thin film during annealing in a hydrogen-containing atmosphere. These features make the TiN electrodes a useful strategy for improving and preserving the ferroelectric properties of HZO thin films for next-generation memory applications.

17.
Opt Express ; 17(12): 10019-24, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19506652

RESUMO

We report the room temperature electroluminescence (EL) at 1.6 microm of a Ge n+/p light emitting diode on a Si substrate. Unlike normal electrically pumped devices, this device shows a super linear luminescence enhancement at high current. By comparing different n type doping concentrations, we observe that a higher concentration is required to achieve better efficiency of the device. Thermal enhancement effects observed in temperature dependent EL spectra show the capability of this device to operate at room temperature or above. These detailed studies show that Ge can be a good candidate for a Si compatible light emitting device.


Assuntos
Eletroquímica/instrumentação , Germânio/química , Iluminação/instrumentação , Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade , Temperatura
18.
ACS Appl Mater Interfaces ; 11(35): 32178-32185, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31392881

RESUMO

With the significant technological developments in recent times, the neuromorphic system has been receiving considerable attention owing to its parallel arithmetic, low power consumption, and high scalability. However, the low reliability of artificial synapse devices disturbs calculations and causes inaccurate results in neuromorphic systems. In this paper, we propose a stable resistive artificial synapse (RAS) device with nitrogen-doped titanium oxide (TiOx:N)-based resistive switching (RS) memory. The TiOx:N-based RAS, compared to the TiOx-based RAS, demonstrates more stable RS characteristics in current-voltage (I-V) and pulse measurements. In terms of resistance variability, the TiOx:N-based RAS demonstrates five times lower resistance variability at 1.38%, compared to 6.68% with the TiOx-based RAS. In addition, we verified the relation between the neuromorphic system and the resistance reliability of the synapse device for the first time. The pattern recognition simulation is performed using an artificial neural network (ANN) consisting of artificial synapse devices using the Modified National Institute of Standards and Technology dataset. In the simulation, the ANN with the TiOx:N-based RAS exhibited significant pattern recognition accuracy of 64.41%, while the ANN with TiOx-based RAS demonstrated only low recognition accuracy of 22.07%. According to the results of subsequent simulations, the pattern recognition accuracy exponentially decreases when the resistance variability exceeds 5%. Therefore, for implementing a stable neuromorphic system, the synapse device in the neuromorphic system has to maintain low resistance variability. The proposed nitrogen-doped synapse device is suitable for neuromorphic systems because reliable resistance variability can be obtained with only simple process steps.

19.
ACS Appl Mater Interfaces ; 11(37): 34084-34090, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31429263

RESUMO

Energy barrier formed at a metal/semiconductor interface is a critical factor determining the performance of nanoelectronic devices. Although diverse methods for reducing the Schottky barrier height (SBH) via interface engineering have been developed, it is still difficult to achieve both an ultralow SBH and a low dependence on the contact metals. In this study, a novel structure, namely, a metal/transition-metal dichalcogenide (TMD) interlayer (IL)/dielectric IL/semiconductor (MTDS) structure, was developed to overcome these issues. Molybdenum disulfide (MoS2) is a promising TMD IL material owing to its interface characteristics, which yields a low SBH and reduces the reliance on contact metals. Moreover, an ultralow SBH is achieved via the insertion of an ultrathin ZnO layer between MoS2 and a semiconductor, thereby inducing an n-type doping effect on the MoS2 IL and forming an interface dipole in the favorable direction at the ZnO IL/semiconductor interfaces. Consequently, the lowest SBH (0.07 eV) and a remarkable improvement in the reverse current density (by a factor of approximately 5400) are achieved, with a wide room for contact-metal dependence. This study experimentally and theoretically validates the effect of the proposed MTDS structure, which can be a key technique for next-generation nanoelectronics.

20.
ACS Appl Mater Interfaces ; 11(9): 9182-9189, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30761894

RESUMO

Electrochemical metallization (ECM) threshold switches are in great demand for various applications such as next-generation logic technology, future memory, and neuromorphic computing. However, the instability of operation due to inherent filamentary randomness is a severe problem that is yet to be solved. Here, we propose a specially treated hafnium oxide (HfO x:N)-based ECM threshold switch with high reliability, low-voltage operation (0.2 V), high ON/OFF ratio (5 × 108), great endurance (106), and fast switching speed (1.5 µs at 2 V). The nitrogen ions in the HfO x:N layer assist confining the path of the metallic filament, which significantly suppresses filament randomness as well as reduces power consumption and alternating current response time. The feasibility of ECM threshold switches to logic applications, AND and OR, is first introduced. The ECM threshold switch has great potential to be utilized in complementary logic circuits because of its ultralow operation power consumption, high integrability using an array structure (4 F2), and fast switching characteristics. Furthermore, we have successfully verified its applicability to flexible electronics on polyethylene naphthalate films that can retain stable operation under considerable mechanical stress. We believe that this research paves the way to fabricate highly reliable ECM threshold switches for flexible complementary logic circuits with ultralow power consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA