Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 99-103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538794

RESUMO

Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.

2.
Nature ; 601(7894): 568-572, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082423

RESUMO

The Leidenfrost effect, namely the levitation of drops on hot solids1, is known to deteriorate heat transfer at high temperature2. The Leidenfrost point can be elevated by texturing materials to favour the solid-liquid contact2-10 and by arranging channels at the surface to decouple the wetting phenomena from the vapour dynamics3. However, maximizing both the Leidenfrost point and thermal cooling across a wide range of temperatures can be mutually exclusive3,7,8. Here we report a rational design of structured thermal armours that inhibit the Leidenfrost effect up to 1,150 °C, that is, 600 °C more than previously attained, yet preserving heat transfer. Our design consists of steel pillars serving as thermal bridges, an embedded insulating membrane that wicks and spreads the liquid and U-shaped channels for vapour evacuation. The coexistence of materials with contrasting thermal and geometrical properties cooperatively transforms normally uniform temperatures into non-uniform ones, generates lateral wicking at all temperatures and enhances thermal cooling. Structured thermal armours are limited only by their melting point, rather than by a failure in the design. The material can be made flexible, and thus attached to substrates otherwise challenging to structure. Our strategy holds the potential to enable the implementation of efficient water cooling at ultra-high solid temperatures, which is, to date, an uncharted property.

3.
Nature ; 592(7855): 551-557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883734

RESUMO

Solid-state lithium (Li)-air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1-4. However, conventional solid electrolytes are unsuitable for use in solid-state Li-air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li-air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li-air batteries confer practical applicability that could extend to other energy-storage systems, such as Li-ion, Na-air and Na-ion batteries.

4.
Chem Rev ; 123(9): 6039-6106, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049046

RESUMO

Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.

5.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38272666

RESUMO

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

6.
J Am Chem Soc ; 146(11): 7605-7615, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467427

RESUMO

Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.

7.
J Am Chem Soc ; 146(13): 8939-8948, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526452

RESUMO

Propane dehydrogenation (PDH) reaction has emerged as one of the most promising propylene production routes due to its high selectivity for propylene and good economic benefits. However, the commercial PDH processes usually rely on expensive platinum-based and poisonous chromium oxide based catalysts. The exploration of cost-effective and ecofriendly PDH catalysts with excellent catalytic activity, propylene selectivity, and stability is of great significance yet remains challenging. Here, we discovered a new active center, i.e., an unsaturated tricoordinated cobalt unit (≡Si-O)CoO(O-Mo) in a molybdenum-doped silicalite-1 zeolite, which afforded an unprecedentedly high propylene formation rate of 22.6 molC3H6 gCo-1 h-1 and apparent rate coefficient of 130 molC3H6 gCo-1 h-1 bar-1 with >99% of propylene selectivity at 550 °C. Such activity is nearly one magnitude higher than that of previously reported Co-based catalysts in which cobalt atoms are commonly tetracoordinated, and even superior to that of most of Pt-based catalysts under similar operating conditions. Density functional theory calculations combined with the state-of-the-art characterizations unravel the role of the unsaturated tricoordinated Co unit in facilitating the C-H bond-breaking of propane and propylene desorption. The present work opens new opportunities for future large-scale industrial PDH production based on inexpensive non-noble metal catalysts.

8.
Chem Soc Rev ; 52(22): 8005-8058, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37880991

RESUMO

Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.

9.
Angew Chem Int Ed Engl ; 63(15): e202319996, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38316641

RESUMO

Metal halide perovskites (MHPs), renowned for their outstanding optoelectronic properties, hold significant promise as photocatalysts for hydrogen evolution reaction (HER). However, the low stability and insufficient exposure of catalytically active sites of bulky MHPs seriously impair their catalytic efficiency. Herein, we utilized an extra-large-pore zeolite ZEO-1 (JZO) as a host to confine and stabilize the CsPbBr3 nanocrystals (3.4 nm) for boosting hydrogen iodide (HI) splitting. The as-prepared CsPbBr3@ZEO-1 featured sufficiently exposed active sites, superior stability in acidic media, along with intrinsic extra-large pores of ZEO-1 that were favorable for molecule/ion adsorption and diffusion. Most importantly, the unique nanoconfinement effect of ZEO-1 led to the narrowing of the band gap of CsPbBr3, allowing for more efficient light utilization. As a result, the photocatalytic HER rate of the as-prepared CsPbBr3@ZEO-1 photocatalyst was increased to 1734 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3) under visible light irradiation compared with bulk CsPbBr3 (11 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), and the long-term durability (36 h) can be achieved. Furthermore, Pt was incorporated with well-dispersed CsPbBr3 nanocrystals into ZEO-1, resulting in a significant enhancement in activity (4826 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), surpassing most of the Pt-integrated perovskite-based photocatalysts. Density functional theory (DFT) calculations and charge-carrier dynamics investigation revealed that the dramatically boosted photocatalytic performance of Pt/CsPbBr3@ZEO-1 could be attributed to the promotion of charge separation and transfer, as well as to the substantially lowered energy barrier for HER. This work highlights the advantage of extra-large-pore zeolites as the nanoscale platform to accommodate multiple photoactive components, opening up promising prospects in the design and exploitation of novel zeolite-confined photocatalysts for energy harvesting and storage.

10.
Angew Chem Int Ed Engl ; : e202410017, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072969

RESUMO

As a fundamental industrial catalytic process, the semihydrogenation of alkynes presents a challenge in striking a balance between activity and selectivity due to the issue of over-hydrogenation. Herein, we develop an efficient catalytic system based on single-atom Pd catalysts supported on boron-containing amorphous zeolites (Pd/AZ-B), achieving the tradeoff breaking between the activity and selectivity for the selective hydrogenation of alkynes. Advanced characterizations and theoretical density functional theory calculations confirm that the incorporated B atoms in the Pd/AZ-B can not only alter the geometric and electronic properties of Pd atoms by controlling the electron migration from Pd but also mitigate the interaction between alkene and the catalyst supports. This boosts the exceptional catalytic efficacy in the semihydrogenation of phenylacetylene to styrene under mild conditions (298 K, 2 bar H2), achieving a recorded turnover frequency (TOF) value of 24198 h-1 and demonstrating 95% selectivity to styrene at full conversion of phenylacetylene. By comparison, the heteroatom-free amorphous zeolite-anchored Pd nanoparticles and the commercial Lindlar catalyst have styrene selectivities of 73% and 15%, respectively, under identical reaction conditions. This work establishes a solid foundation for developing highly active and selective hydrogenation catalysts by controllably optimizing their electronic and steric properties.

11.
Angew Chem Int Ed Engl ; : e202409001, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990826

RESUMO

Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd-1 h-1 and a formate production rate of 536 molformate molPd-1 h-1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.

12.
J Am Chem Soc ; 145(16): 9021-9028, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022719

RESUMO

The anisotropic surface functionalization of microporous zeolites with mesoporous materials into hierarchically porous heterostructures with distinctive physical and chemical properties is expected to significantly extend their applicability to catalysis. However, the precise control of the surface chemistry of zeolite crystals through site-specific interconnection with mesoporous materials remains a grand challenge. Here, we report a regioselective surface assembly strategy for the region-specific growth of mesoporous polymer/carbon on zeolite nanocrystals. The approach enables controllable regioselective surface deposition of mesoporous polydopamine on the edges, curved surfaces, or/and flat surfaces of the silicalite-1 nanocrystals into exotic hierarchical nanostructures with diverse surface geometries. Upon carbonization, their derived heterostructures with anisotropic surface wettability show amphiphilic properties. As a proof of concept, Pt nanoparticle-encapsulated silicalite-1/mesoporous carbon nanocomposites are tested to be interface-active for forming Pickering emulsions. Significantly, the catalysts show superior catalytic performance in shape-selective hydrogenation of various nitroarenes in a series of biphasic tandem catalytic reactions, giving ∼100% yield of corresponding amine products. The results pave a path toward rational construction of high levels of surface structural complexity in hierarchically porous heterostructures for specific physical and chemical characteristics in diverse applications.

13.
J Am Chem Soc ; 145(39): 21231-21241, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37748094

RESUMO

Zeolite nonclassical growth via particle attachment has been proposed for two decades, yet the attachment mechanism and kinetic regulation remain elusive. Here, nonclassical growth of an MFI-type zeolite has been achieved by using amorphous protozeolite (PZ) nanoparticles containing encapsulated TPA+ templates and abundant silanols (Si-OH) as sole precursors under hydrothermal conditions. The silanol characteristics of the precursor were studied by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) correlation spectroscopy, which were proven to play critical roles in determining precursor attachment behavior and crystal growth orientation. Under mechanical ball-milling or tablet-pressing process, pressure drove the fusion of spherical PZ into platelet-like integrated PZ (IPZ) coupled with transformations of external silanols from evenly distributed to curvature-dependent distributed and internal silanols from isolated to spatially proximate. Compared to isolated silanols, the spatially proximate silanols possessed a stronger correlation with TPA+, benefiting the formation of Si-O-Si bonds via silanol condensation. Subsequently, driven by minimization of surface energy, particle attachment of the platelet-like IPZ precursor preferentially occurred at high-curvature surfaces with high-density silanols, leading to anisotropic rates of nonclassical growth and thus the formation of high-aspect-ratio MFI-type zeolite nanosheets. Advanced electron microscopy provided direct evidence of attachment of amorphous IPZ precursors to crystalline intermediate surfaces along the c-axis direction with the formation of amorphous-crystalline interfaces, followed by interface elimination and structural evolution to a single-crystalline phase. Our findings not only unravel the zeolite nonclassical growth mechanism but also reveal the critical role of silanol chemistry in kinetic regulation, which is of great importance for pursuing a tailored zeolite synthesis.

14.
J Am Chem Soc ; 145(50): 27740-27747, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059924

RESUMO

Mass adoption of electric vehicles and the depletion of finite metal resources make it imperative to recycle lithium-ion batteries (LIBs). However, current recycling routes of pyrometallurgy and hydrometallurgy are mainly developed for LiCoO2 and suffer from great energy inputs and extensive processing; thus, alternative versatile and green approaches are in urgent demand. Here, we report an ingenious and versatile strategy for recycling LIBs via catalyst reconstruction, using hydrogen evolution reaction as a proof of concept. Layered, spinel, and polyanion oxide cathode materials, as catalysts, are structurally transformed into hydroxides assisted by protons or hydroxide ions, facilitating complete metal extraction (e.g., Li, Co, Ni, Mn, Fe) with high leaching efficiencies approaching 100%. This recycling method is generally applicable to almost all commercial cathode systems and extended to actual spent pouch cells. Such a green hydrogen coupling approach provides a versatile and sustainable alternative to conventional approaches and has a broad impact beyond battery recycling.

15.
J Am Chem Soc ; 145(9): 5486-5495, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820815

RESUMO

Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.

16.
J Am Chem Soc ; 145(9): 5342-5352, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812430

RESUMO

Zeolites are widely used as catalysts and adsorbents in the chemical industry, but their potential for electronic devices has been stunted to date, as they are commonly recognized as electronic insulators. Here, we have for the first time demonstrated that Na-type ZSM-5 zeolites are ultrawide-direct-band-gap semiconductors based on optical spectroscopy, variable-temperature current-voltage characteristics, and photoelectric effect as well as electronic structure theoretical calculations and further unraveled the band-like charge transport mechanism in electrically conductive zeolites. The increase in charge-compensating Na+ cations in Na-ZSM-5 decreases the band gap and affects its density of states, shifting the Fermi level close to the conduction band. Remarkably, the semiconducting Na-ZSM-5 zeolites have been first applied for constructing electrically transduced sensors that can sense trace-level (77 ppb) ammonia with unprecedentedly high sensitivity, negligible cross-sensitivity, and high stability under moisture ambient conditions compared with conventional semiconducting materials and conductive metal-organic frameworks (MOFs). The charge density difference shows that the massive electron transfer between NH3 molecules and Na+ cations ascribed to Lewis acid sites enables electrically transduced chemical sensing. This work opens a new era of zeolites in applications of sensing, optics, and electronics.

17.
J Am Chem Soc ; 145(44): 24116-24125, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37783464

RESUMO

All-solid-state batteries with a high energy density and safety are desirable candidates for next-generation energy storage applications. However, conventional solid electrolytes for all-solid-state batteries encounter limitations such as poor ionic conduction, interfacial compatibility, instability, and high cost. Herein, taking advantage of the ingenious capability of zeolite to incorporate functional guests in its void space, we present an innovative ionic activation strategy based on the "guest wrench" mechanism, by introducing a pair of cation and anion of LiTFSI-based guest species (GS) into the supercage of the LiX zeolite, to fabricate a zeolite membrane (ZM)-based solid electrolyte (GS-ZM) with high Li ionic conduction and interfacial compatibility. The restriction of zeolite frameworks toward the framework-associated Li ions is significantly reduced through the dynamic coordination of Li ions with the "oxygen wrench" of TFSI- at room temperature as shown by experiments and Car-Parrinello molecular dynamics simulations. Consequently, the GS-ZM shows an ∼100% increase in ionic conductivity compared with ZM and an outstanding Li+ transference number of 0.97. Remarkably, leveraging the superior ionic conduction of GS-ZM with the favorable interface structure between GS-ZM and electrodes, the assembled all-solid-state Li-ion and Li-air batteries based on GS-ZM exhibit the best-level electrochemical performance much superior to batteries based on liquid electrolytes: a capacity retention of 99.3% after 800 cycles at 1 C for all-solid-state Li-ion batteries and a cycle life of 909 cycles at 500 mA g-1 for all-solid-state Li-air batteries. The mechanistic discovery of a "guest wrench" in zeolite will significantly enhance the adaptability of zeolite-based electrolytes in a variety of all-solid-state energy storage systems with high performance, high safety, and low cost.

18.
Environ Sci Technol ; 57(48): 19956-19964, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37948508

RESUMO

Pd/SSZ-13 has been proposed as a passive NOx adsorber (PNA) for low-temperature NOx adsorption. However, it remains challenging for Pd/SSZ-13 to work efficiently when suffering from phosphorus poisoning. Herein, we report a simple and efficient strategy to regenerate the phosphorus-poisoned Pd/SSZ-13 based on the cooperation between hydrothermal aging treatment and Na cocations. It was found that hydrothermal aging treatment enabled the redispersion of Pd and P-containing species in phosphorus-poisoned Pd/SSZ-13. Meanwhile, the presence of Na cocations significantly reduced the formation of AlPO4 and retained more paired Al sites for highly dispersed Pd2+ ions, which was of great importance for the recovery of adsorption performance. To our satisfaction, the restoration ratio of the adsorption capacity of poisoned Pd/SSZ-13 was >90% after regeneration. Strikingly, the NOx adsorption activities of phosphorus-poisoned Pd/SSZ-13 with phosphorus loadings of 0.2 and 0.4 mmol g-1 almost completely recovered upon regeneration. This study demonstrates the promoting effect of Na cocations on the regeneration of phosphorus-poisoned Pd/SSZ-13 by hydrothermal aging treatment, which provides useful guidance for the design of PNA materials with excellent durability for cold-start application.


Assuntos
Fósforo , Venenos , Adsorção , Íons
19.
Angew Chem Int Ed Engl ; 62(48): e202313101, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37792288

RESUMO

The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.

20.
Angew Chem Int Ed Engl ; 62(32): e202306174, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190928

RESUMO

Cu-exchanged low-silica CHA zeolites (Si/Al≤4) synthesized without organic templates are promising candidate catalysts for ammonia selective catalytic reduction of nitrogen oxides (NH3 -SCR), but their practical application is restricted due to the low hydrothermal stability. Here, inspired by the transcription from duplex DNA to RNA, we synthesized Al pairs enriched low-silica CHA zeolite (CHA-SPAEI, Si/Al=3.7) by using silicoaluminophosphate (SAPO) featured by strict alternation of -Al-O-P(Si)-O-Al-O- tetrahedra as seed. The proportion of Al pairs in CHA-SPAEI is 78 %, which is much higher than that in the conventional low-silica CHA (CHA-LS, 52 %). After hydrothermal ageing at 800 °C for 6 h, Cu-exchanged CHA-SPAEI shows NO conversion above 90 % within 225-500 °C under a gas hourly space velocity of 200,000 h-1 , which is much better than that of Cu-exchanged CHA-LS. The spatial close proximity of Al pairs in CHA-SPAEI is confirmed by the 27 Al double-quantum single-quantum two-dimensional NMR analyses. The strict -P(Si)-O-Al-O-P(Si)-O- sequence in the fragments from the dissolution of SAPO seed promotes the Al pairs with the -Al-O-Si-O-Al-O- sequence via a transcription process. The utilization of aluminophosphate-based zeolites as seeds opens up a new avenue for the regulation of the Al distribution in zeolites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA