Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2319751121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38662548

RESUMO

Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 µmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.

2.
Proc Natl Acad Sci U S A ; 119(18): e2202382119, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476529

RESUMO

SignificanceSeawater is one of the most abundant resources on Earth. Direct electrolysis of seawater is a transformative technology for sustainable hydrogen production without causing freshwater scarcity. However, this technology is severely impeded by a lack of robust and active oxygen evolution reaction (OER) electrocatalysts. Here, we report a highly efficient OER electrocatalyst composed of multimetallic layered double hydroxides, which affords superior catalytic performance and long-term durability for high-performance seawater electrolysis. To the best of our knowledge, this catalyst is among the most active for OER and it advances the development of seawater electrolysis technology.

3.
Chem Soc Rev ; 52(22): 7687-7706, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37877319

RESUMO

Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.

4.
J Environ Sci (China) ; 140: 183-203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331499

RESUMO

Photocatalytic conversion of CO2 into fuels such as CO, CH4, and CH3OH, is a promising approach for achieving carbon neutrality. Bismuth oxyhalides (BiOX, where X = Cl, Br, and I) are appropriate photocatalysts for this purpose due to the merits of visible-light-active, efficient charge separation, and easy-to-modify crystal structure and surface properties. For practical applications, multiple strategies have been proposed to develop high-efficiency BiOX-based photocatalysts. This review summarizes the development of different approaches to prepare BiOX-based photocatalysts for efficient CO2 reduction. In the review, the fundamentals of photocatalytic CO2 reduction are introduced. Then, several widely used modification methods for BiOX photocatalysts are systematacially discussed, including heterojunction construction, introducing oxygen vacancies (OVs), Bi-enrichment, heteroatom-doping, and morphology design. Finally, the challenges and prospects in the design of future BiOX-based photocatalysis for efficient CO2 reduction are examined.


Assuntos
Bismuto , Dióxido de Carbono , Carbono , Luz , Oxigênio
5.
Angew Chem Int Ed Engl ; : e202410179, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953224

RESUMO

Photocatalytic synthesis of H2O2 is an advantageous and ecologically sustainable alternative to the conventional anthraquinone process. However, achieving high conversion efficiency without sacrificial agents remains a challenge. In this study, two covalent organic frameworks (COF-O and COF-C) were prepared with identical skeletal structures but with their pore walls anchored to different alkyl chains. They were used to investigate the effect of the chemical microenvironment of pores on photocatalytic H2O2 production. Experimental results reveal a change of hydrophilicity in COF-O, leading to suppressed charge recombination, diminished charge transfer resistance, and accelerated interfacial electron transfer. An apparent quantum yield as high as 10.3% (λ = 420 nm) can be achieved with H2O and O2 through oxygen reduction reaction. This is among the highest ever reported for polymer photocatalysts. This study may provide a novel avenue for optimizing photocatalytic activity and selectivity in H2O2 generation.

6.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37317545

RESUMO

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

7.
Environ Sci Technol ; 57(12): 5024-5033, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892275

RESUMO

Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 µmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.


Assuntos
Cobre , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Fósforo , Oxirredução , Oxigênio
8.
Angew Chem Int Ed Engl ; 62(33): e202307236, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37349960

RESUMO

Earth's primordial atmosphere was rich in ammonia and methane. To understand the evolution of the atmosphere, these two gases were used to make photoredox-active nitrogen-doped carbon (NDC). Photocatalysts such as NDC might play an important role in the development of geological and atmospheric chemistry during the Archean era. This study describes the synthesis of NDC directly from NH3 and CH4 gases. The photocatalyst product can be used to selectively synthesize imines by photo-oxidization of amines, producing H2 O2 simultaneously in the photoreduction reaction. Our findings shed light on the chemical evolution of the Earth.

9.
Angew Chem Int Ed Engl ; 62(13): e202218016, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36593736

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.

10.
Angew Chem Int Ed Engl ; 60(2): 927-936, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32978849

RESUMO

Nitrogen fixation is an essential process for sustaining life. Tremendous efforts have been made on the photodriven fixation of nitrogen into ammonia. However, the disproportionation of dinitrogen to ammonia and nitrate under ambient conditions has remained a grand challenge. In this work, the photodriven disproportionation of nitrogen is realized in water under visible light and ambient conditions using Fe-doped TiO2 microspheres. The oxygen vacancies associated with the Fe dopants activate chemisorbed N2 molecules, which can then be fixed into NH3 with H2 O2 as the oxidation product. The generated H2 O2 thereafter oxidizes NH3 into nitrate. This disproportionation reaction can be turned to the reductive one by loading plasmonic Au nanoparticles in the doped TiO2 microspheres. The generated H2 O2 can be effectively decomposed by the Au nanoparticles, resulting in the transformation of the disproportionation reaction to the completely reductive nitrogen photofixation.

11.
J Am Chem Soc ; 142(15): 7036-7046, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32223152

RESUMO

The limitations of the Haber-Bosch reaction, particularly high-temperature operation, have ignited new interests in low-temperature ammonia-synthesis scenarios. Ambient N2 electroreduction is a compelling alternative but is impeded by a low ammonia production rate (mostly <10 mmol gcat-1 h-1), a small partial current density (<1 mA cm-2), and a high-selectivity hydrogen-evolving side reaction. Herein, we report that room-temperature nitrate electroreduction catalyzed by strained ruthenium nanoclusters generates ammonia at a higher rate (5.56 mol gcat-1 h-1) than the Haber-Bosch process. The primary contributor to such performance is hydrogen radicals, which are generated by suppressing hydrogen-hydrogen dimerization during water splitting enabled by the tensile lattice strains. The radicals expedite nitrate-to-ammonia conversion by hydrogenating intermediates of the rate-limiting steps at lower kinetic barriers. The strained nanostructures can maintain nearly 100% ammonia-evolving selectivity at >120 mA cm-2 current densities for 100 h due to the robust subsurface Ru-O coordination. These findings highlight the potential of nitrate electroreduction in real-world, low-temperature ammonia synthesis.

12.
J Chem Phys ; 153(2): 024707, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668923

RESUMO

Elemental red phosphorus (red P) is a new class of photocatalysts with a desirable bandgap of ∼1.7 eV and has a strong visible-light response. Here, we show that the efficiency of red P is limited by severe electron trapping at deep traps that are intrinsic to the different crystal facets of the red P. To overcome this, we synthesized the red P/RGO (reduced graphene oxide) composite in a one-step ampoule chemical vapor deposition synthesis that formed a conducive interface between the red P photocatalyst and the RGO acceptor for efficient interfacial charge transport. As substantiated through photoelectrochemical characterization and ultrafast (femtoseconds) transient absorption spectroscopy, the interfacing with RGO provided a rapid pathway for the photocharges in red P to be interfacially separated, thereby circumventing the slower the charge trapping process. As a result, up to a sevenfold increase in the photocatalytic hydrogen production rate (apparent quantum yield = 3.1% at 650 nm) was obtained for the red P/RGO relative to the pristine red P.

13.
Angew Chem Int Ed Engl ; 59(46): 20538-20544, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700466

RESUMO

H2 O2 is a versatile and environmentally friendly chemical involved in water treatment, such as advanced oxidation processes. Anthraquinone oxidation is widely used for large-scale production of H2 O2 , which requires significant energy input and periodic replacement of the carrier molecule. H2 O2 production should be customized considering the specific usage scenario. Electrochemical synthesis of H2 O2 can be adopted as alternatives to traditional method, which avoids concentration, transportation, and storage processes. Herein, we identified Bi2 WO6 :Mo as a low-cost and high-selectivity choice from a series of Bi-based oxides for H2 O2 generation via two-electron water oxidation reaction. It can continuously provide H2 O2 for in situ degradation of persistent pollutants in aqueous solution. Clean energy from H2 can also be produced at the cathode. This kind of water splitting producing sustainable resources of H2 O2 and H2 is an advance in environmental treatment and energy science.

14.
J Am Chem Soc ; 140(27): 8497-8508, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29905477

RESUMO

The fixation of atmospheric N2 to NH3 is an essential process for sustaining life. One grand challenge is to develop efficient catalysts to photofix N2 under ambient conditions. Herein we report an all-inorganic catalyst, Au nanocrystals anchored on ultrathin TiO2 nanosheets with oxygen vacancies. It can accomplish photodriven N2 fixation in the "working-in-tandem" pathway at room temperature and atmospheric pressure. The oxygen vacancies on the TiO2 nanosheets chemisorb and activate N2 molecules, which are subsequently reduced to NH3 by hot electrons generated from plasmon excitation of the Au nanocrystals. The apparent quantum efficiency of 0.82% at 550 nm for the conversion of incident photons to NH3 is higher than those reported so far. Optimizing the absorption across the overall visible range with the mixture of Au nanospheres and nanorods further enhances the N2 photofixation rate by 66.2% in comparison with Au nanospheres used alone. This work offers a new approach for the rational design of efficient catalysts toward sustainable N2 fixation through a less energy-demanding photochemical process compared to the industrial Haber-Bosch process.

15.
Environ Sci Technol ; 51(12): 7076-7083, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28510421

RESUMO

Carbohydrates in biomass can be converted to semiconductive hydrothermal carbonation carbon (HTCC), a material that contains plenty of sp2-hybridization structures. Under solar light illumination, HTCC generates photoexcited electrons, holes, and hydroxyl radicals. These species can be used for photocatalytic treatment such as water disinfection and degradation of organic pollutants. The photocatalytic activity of HTCC can be significantly enhanced by iodine doping. The enhancement mechanism is investigated by density functional theoretical calculations and electrochemical measurements. The iodine dopants twist and optimize the structures of the sp2-hybridization in HTCC, thereby favoring photon-induced excitation. Moreover, the iodine dopants facilitate the charge transfer between different sp2-hybridization structures, thus increasing the conductivity and activity of the HTCC. An added benefit is that the I-doped HTCC exhibits lower cytotoxic effect than the pure HTCC. In addition to monosaccharides (glucose), disaccharides (sucrose), and polysaccharides (starch), we have also transformed crops (e.g., rice), plants (e.g., grass), and even agricultural waste (e.g., straw) and animal waste (e.g., cow dung). The conversion of carbohydrates to HTCC may be considered as a "Trash to Treasure" approach. We believe this discovery will attract a lot of attention from researchers involved in environmental catalysis, waste recycling, and pollution treatment.


Assuntos
Carboidratos , Carbono , Animais , Catálise , Bovinos , Feminino , Luz , Esterco
16.
J Environ Sci (China) ; 60: 91-97, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29031451

RESUMO

A simple approach to enhance the photocatalytic activity of red phosphorus (P) was developed. A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV-vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.


Assuntos
Grafite/química , Fósforo/química , Processos Fotoquímicos , Pontos Quânticos/química
17.
Angew Chem Int Ed Engl ; 55(33): 9580-5, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27145537

RESUMO

Semiconductive property of elementary substance is an interesting and attractive phenomenon. We obtain a breakthrough that fibrous phase red phosphorus, a recent discovered modification of red phosphorus by Ruck et al., can work as a semiconductor photocatalyst for visible-light-driven hydrogen (H2 ) evolution. Small sized fibrous phosphorus is obtained by 1) loading it on photoinactive SiO2 fibers or by 2) smashing it ultrasonically. They display the steady hydrogen evolution rates of 633 µmol h(-1) g(-1) and 684 µmol h(-1) g(-1) , respectively. These values are much higher than previous amorphous P (0.6 µmol h(-1) g(-1) ) and Hittorf P (1.6 µmol h(-1) g(-1) ). Moreover, they are the highest records in the family of elemental photocatalysts to date. This discovery is helpful for further understanding the semiconductive property of elementary substance. It is also favorable for the development of elemental photocatalysts.

18.
Environ Sci Technol ; 49(10): 6264-73, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25894494

RESUMO

Earth-abundant red phosphorus was found to exhibit remarkable efficiency to inactivate Escherichia coli K-12 under the full spectrum of visible light and even sunlight. The reactive oxygen species (•OH, •O2(-), H2O2), which were measured and identified to derive mainly from photogenerated electrons in the conduction band using fluorescent probes and scavengers, collectively contributed to the good performance of red phosphorus. Especially, the inactivated-membrane function enzymes were found to be associated with great loss of respiratory and ATP synthesis activity, the kinetics of which paralleled cell death and occurred much earlier than those of cytoplasmic proteins and chromosomal DNA. This indicated that the cell membrane was a vital first target for reactive oxygen species oxidation. The increased permeability of the cell membrane consequently accelerated intracellular protein carboxylation and DNA degradation to cause definite bacterial death. Microscopic analyses further confirmed the cell destruction process starting with the cell envelope and extending to the intracellular components. The red phosphorus still maintained good performance even after recycling through five reaction cycles. This work offers new insight into the exploration and use of an elemental photocatalyst for "green" environmental applications.


Assuntos
Escherichia coli K12 , Luz , Isótopos de Fósforo/farmacologia , Purificação da Água , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/efeitos da radiação , Oxirredução , Espécies Reativas de Oxigênio , Microbiologia da Água
19.
J Environ Sci (China) ; 34: 232-47, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257366

RESUMO

Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a "green" advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatalysts and their underlying mechanisms in bacterial inactivation. The photocatalysts are classified into TiO2-based and non-TiO2-based systems, as TiO2 is the most investigated photocatalyst. The synthesis methods, modification strategies, bacterial disinfection activities and mechanisms of different types of photocatalysts are reviewed in detail. Emphasis is given to the modified TiO2, including noble metal deposition, non-metal doping, dye sensitization and composite TiO2, along with typical non-TiO2-based photocatalysts for bacterial disinfection, including metal oxides, sulfides, bismuth metallates, graphene-based photocatalysts, carbon nitride-based photocatalysts and natural photocatalysts. A simple and versatile methodology by using a partition system combined with scavenging study is introduced to study the photocatalytic disinfection mechanisms in different photocatalytic systems. This review summarizes the current state of the work on photocatalytic disinfection of bacteria, and is expected to offer useful insights for the future development in the field.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Desinfetantes/farmacologia , Desinfecção/métodos , Fotólise , Luz Solar , Titânio/química
20.
Langmuir ; 30(10): 2676-83, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24601731

RESUMO

We report a facile method for preparing porous structured TiO2 materials by templating from Pickering high-internal phase emulsions (HIPEs). A Pickering HIPE with an internal phase of up to 80 vol %, stabilized by poly(N-isopropylacrylamide)-based microgels and TiO2 solid nanoparticles, was first formulated and employed as a template to prepare the porous TiO2 materials with an interconnected structure. The resultant materials were characterized by scanning electron microscopy, X-ray diffraction, and mercury intrusion. Our results showed that the parent emulsion droplets promoted the formation of macropores and interconnecting throats with sizes of ~50 and ~10 µm, respectively, while the interfacially adsorbed microgel stabilizers drove the formation of smaller pores (~100 nm) throughout the macroporous walls after drying and sintering. The interconnected structured network with the bimodal pores could be well preserved after calcinations at 800 °C. In addition, the photocatalytic activity of the fabricated TiO2 was evaluated by measuring the photodegradation of Rhodamine B in water. Our results revealed that the fabricated TiO2 materials are good photocatalysts, showing enhanced activity and stability in photodegrading organic molecules.


Assuntos
Emulsões/química , Titânio/química , Microscopia Eletrônica de Varredura , Porosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA