Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 1): 159807, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461568

RESUMO

Antibiotics have been widely used for improving human and animal health and well-being for many decades. However, the enormous antibiotic usage in agriculture especially for livestock leads to considerable quantities of antibiotic residues in associated food products and can reach potentially hazardous levels for consumers. Therefore, timely detection and systematical surveillance on residual antibiotics in food materials are of significance to minimize the negative impact caused by such unwanted antibiotic leftovers. To this end, we constructed a cloud-platform-based system (ARSCP) for comprehensive surveillance of antibiotic residues in food materials. With the system, we collected 126,560 samples from 68 chicken farms across China and detected the antibiotic residues using a rapid detection colorimetric commercial (Explorer 2.0) kit and UPLC-MS/MS. Only 108 (0.085 %) of the samples contained residual antibiotics exceeding the MRLs and all data were subjected to ARSCP system to provide a landscape of antibiotic residues in China. As a proof-of-concept, we provided an overview of residual antibiotics based on data from China, but the system is generally applicable to track and monitor the antibiotic residues globally when the data from other countries are incorporated. We used the combined Explorer 2.0 and MS data to construct ARSCP, an antimicrobial residue surveillance cloud platform for raw chicken samples. ARSCP can be used for rapid detection and real-time monitoring of antibiotic residues in animal food and provides both data management and risk warning functions. This system provides a solution to improve the management of facilities that must monitor antibiotic MRLs in food animal products that can reduce the pollution of antibiotics to the environment.


Assuntos
Anti-Infecciosos , Computação em Nuvem , Animais , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos , Ração Animal , Progressão da Doença
2.
Genome Med ; 12(1): 111, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287863

RESUMO

BACKGROUND: The recent emergence and dissemination of high-level mobile tigecycline resistance Tet(X) challenge the clinical effectiveness of tigecycline, one of the last-resort therapeutic options for complicated infections caused by multidrug-resistant Gram-negative and Gram-positive pathogens. Although tet(X) has been found in various bacterial species, less is known about phylogeographic distribution and phenotypic variance of different genetic variants. METHODS: Herein, we conducted a multiregional whole-genome sequencing study of tet(X)-positive Acinetobacter isolates from human, animal, and their surrounding environmental sources in China. The molecular and enzymatic features of tet(X) variants were characterized by clonal expression, microbial degradation, reverse transcription, and gene transfer experiments, while the tet(X) genetic diversity and molecular evolution were explored by comparative genomic and Bayesian evolutionary analyses. RESULTS: We identified 193 tet(X)-positive isolates from 3846 samples, with the prevalence ranging from 2.3 to 25.3% in nine provinces in China. The tet(X) was broadly distributed in 12 Acinetobacter species, including six novel species firstly described here. Besides tet(X3) (n = 188) and tet(X4) (n = 5), two tet(X5) variants, tet(X5.2) (n = 36) and tet(X5.3) (n = 4), were also found together with tet(X3) or tet(X4) but without additive effects on tetracyclines. These tet(X)-positive Acinetobacter spp. isolates exhibited 100% resistance rates to tigecycline and tetracycline, as well as high minimum inhibitory concentrations to eravacycline (2-8 µg/mL) and omadacycline (8-16 µg/mL). Genetic analysis revealed that different tet(X) variants shared an analogous ISCR2-mediated transposon structure. The molecular evolutionary analysis indicated that Tet(X) variants likely shared the same common ancestor with the chromosomal monooxygenases that are found in environmental Flavobacteriaceae bacteria, but sequence divergence suggested separation ~ 9900 years ago (7887 BC), presumably associated with the mobilization of tet(X)-like genes through horizontal transfer. CONCLUSIONS: Four tet(X) variants were identified in this study, and they were widely distributed in multiple Acinetobacter spp. strains from various ecological niches across China. Our research also highlighted the crucial role of ISCR2 in mobilizing tet(X)-like genes between different Acinetobacter species and explored the evolutionary history of Tet(X)-like monooxygenases. Further studies are needed to evaluate the clinical impact of these mobile tigecycline resistance genes.


Assuntos
Acinetobacter/genética , Acinetobacter/metabolismo , Genes Bacterianos/genética , Variação Genética , Tigeciclina/farmacologia , Acinetobacter/isolamento & purificação , Animais , Antibacterianos/farmacologia , Teorema de Bayes , China , Evolução Molecular , Flavobacteriaceae , Humanos , Testes de Sensibilidade Microbiana , Tetraciclinas , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA