RESUMO
Drug resistance caused by the extreme genetic variability of zhe hepatitis C virus has rendered effective combinations of drugs indispensable in the treatment of chronic hepatitis C (CHC). Herein, we developed a fixed-dose combination (FDC) treatment containing the NS5B inhibitor sofosbuvir (SOF) and the NS5A inhibitor fopitasvir (FOP). Then the dissolution behavior of FOP in FOP/SOF FDC was improved by co-micronizing FOP with lactose. The enhanced dissolution rate of FOP in the FDC was in good agreement with the behavior of the FOP singledrug tablet. In addition, pharmacokinetic studies showed that both FOP and SOF in the FDC exhibited similar characteristics (area under the curve, Cmax, Tmax, and T1/2) as those of tablets containing FOP or SOF alone. These results revealed that the FOP/SOF FDC represents a potential therapeutic option for the treatment of CHC.
Assuntos
Hepatite C Crônica , Sofosbuvir , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , ComprimidosRESUMO
Two classes of piperazinone-containing thieno[3,2-d]pyrimidines were designed and synthesized as new PI3Kδ inhibitors in this study. Detailed SAR study with respect to the piperazinone substituents at the 6-position of thieno[3,2-d]pyrimidine core demonstrated that piperazinone-containing thieno[3,2-d]pyrimidines would be more potent and selective for PI3Kδ than their piperazine counterparts, which led to the discovery of several potent PI3Kδ inhibitors with comparable or better antiproliferative activity against a panel of non-Hodgkin lymphoma (NHL) cell lines as compared with idelalisib. Our study will promote the development of new PI3Kδ inhibitors based on piperazinone-containing thieno[3,2-d]pyrimidine scaffold.
Assuntos
Antineoplásicos/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/química , Piperazinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-AtividadeRESUMO
PI3Kδ has proved to be an effective target for anti-lymphoma drugs. However, the application of current approved PI3Kδ inhibitors has been greatly limited due to their specific immune-mediated toxicity and increased risk of infection, it is necessary to develop more PI3Kδ inhibitors with new scaffold. In this study, SAR study with respect to piperazinone-containing purine derivatives led to the discovery of a potent and selective PI3Kδ inhibitor, 4-(cyclobutanecarbonyl)-1-((2-(2-ethyl-1H-benzo[d]imidazol-1-yl)-9-methyl-6-morpholino-9H-purin-8-yl)methyl)piperazin-2-one (WNY1613). WNY1613 exhibits good antiproliferative activity against a panel of non-Hodgkin's lymphoma (NHL) cell lines by inducing cancer cell apoptosis and inhibiting the phosphorylation of PI3K and MAPK downstream components. In addition, it can also prevent the tumor growth in both SU-DHL-6 and JEKO-1 xenograft models without observable toxicity. WNY1613 thus could be developed as a promising candidate for the treatment of NHL after subsequent extensive pharmacodynamics and pharmacokinetics investigation.
Assuntos
Antineoplásicos/síntese química , Inibidores Enzimáticos/síntese química , Linfoma não Hodgkin/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Piperazinas/química , Purinas/síntese química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Morfolinas/química , Neoplasias Experimentais , Fosforilação , Purinas/farmacologiaRESUMO
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, has been recognized as an attractive candidate target for the treatment targeting gene transcription in several types of cancers. In this study, two types of novel compounds were designed, synthesized and evaluated as BRD4 inhibitors. Therein, pyridone derivatives were more effective against BRD4 protein and human leukemia cell lines MV4-11. Among them, compounds 11d, 11e and 11f were the most potential ones with IC50 values of 0.55⯵M, 0.86⯵M and 0.80⯵M against BRD4, and exhibited remarkable antiproliferative activities against MV4-11 cells with IC50 values of 0.19⯵M, 0.32⯵M and 0.12⯵M, respectively. Moreover, in western blot assay, compound 11e induced down-regulation of C-Myc, which is a significant downstream gene of BRD4. Cell cycle analysis assay also showed that compound 11e could block MV4-11 cells at G0/G1 phase. Taken together, our results suggested that compound 11e and its derivatives were a class of novel structural potential BRD4 inhibitors and could serve as lead compounds for further exploration.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Desenho de Fármacos , Isoxazóis/química , Leucemia/tratamento farmacológico , Piridonas/química , Fatores de Transcrição/antagonistas & inibidores , Ciclo Celular , Humanos , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Células Tumorais CultivadasRESUMO
New analogues of antitubercular drug Delamanid were prepared, seeking drug candidates with enhanced aqueous solubility and high efficacy. The strategy involved replacement of phenoxy linker proximal to the 2-nitroimidazooxazole of Delamanid by piperidine fused 5 or 6-membered ring heterocycles (ring A). The new compounds were all more hydrophilic than Delamanid, and several class of analogues showed remarkable activities against M. bovis. And among these series, the tetrahydro-naphthyridine-linked nitroimidazoles displayed excellent antimycobacterial activity against both replicating (MABA) and nonreplicating (LORA) M. tb H37Rv and low cytotoxicity. Compared to Delamanid, these new compounds (6, 7, 45) demonstrated dramatically improved physicochemical properties and are suitable for further in vitro and in vivo evaluation.
Assuntos
Antituberculosos/química , Oxazóis/química , Animais , Antituberculosos/síntese química , Antituberculosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Nitroimidazóis/farmacologia , Oxazóis/síntese química , Oxazóis/farmacologia , Permeabilidade/efeitos dos fármacos , Solubilidade , Relação Estrutura-Atividade , Células VeroRESUMO
The non-structural protein 4B (NS4B) of hepatitis C virus (HCV) has emerged as a promising target for chronic hepatitis C treatment. The thieno[2,3-b]pyridine HCV inhibitor 2 has demonstrated properties as a NS4B inhibitor. Subsequent hybridization of 2 with our recently published imidazo[2,1-b]thiazole NS4B inhibitor 3 resulted in the discovery of several more potent compounds with sub-micromolar EC50 against HCV genotype 1b replicon. More importantly, the resistant profile study of the new synthesized HCV inhibitors illustrated that the bicyclic scaffold would mediate the resistance of H3R and Q26R mutations, while the piperazinone motif would mediate the resistance of H94R, F98C and V105M mutations, and the C3- amino group would disrupt the interaction between piperazinone motif and NS4B. This structure-resistance relationship detail could help us to develop new NS4B inhibitors with higher resistant barrier in the future.
Assuntos
Antivirais/química , Piridinas/química , Piridinas/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Hepacivirus , Humanos , Replicação Viral/efeitos dos fármacosRESUMO
Tuberculosis is a major global health problem, and the emergence of multidrug-resistant and extensively drug-resistant strains has increased the difficulty of treating this disease. Among the novel antituberculosis drugs in the pipeline, decaprenylphosphoryl-beta-d-ribose-2-epimerase (DprE1) inhibitors such as BTZ043 and pBTZ169 exhibited extraordinary antituberculosis potency. Here, the metabolites of the new DprE1 inhibitor SKLB-TB1001 in vivo and its inhibition of cytochrome P450 isoforms and plasma protein binding (PPB) in vitro were studied. The results showed that rapid transformation and high PPB resulted in inadequate exposure in vivo and thus led to the moderate potency of SKLB-TB1001 in vivo This study provided explanations for the discrepant potency of this scaffold in vivo and in vitro Meanwhile, it also provides a rationale for lead optimization of this very promising scaffold of antituberculosis agents to prevent them from being metabolized, thus improving their exposure in vivo.
Assuntos
Antituberculosos/farmacocinética , Proteínas de Bactérias/metabolismo , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Proteínas de Bactérias/genética , Camundongos , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Tuberculose/metabolismoRESUMO
Tuberculosis (TB) remains a major human health problem. New therapeutic antitubercular agents are urgent needed to control the global tuberculosis pandemic. We synthesized a new series of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives and evaluated their anti-mycobacterial activities against Mycobacterium tuberculosis H37Ra as well as their druggabilities. The results showed that most of these derivatives, especially the compounds with simple alkyl side chains, exhibited good antitubercular activities and favorable aqueous solubilities with no obvious cytotoxicity. It suggested that the 4-carbonyl piperazine substituents in benzothiazinone scaffold were well tolerated, in which the compound 8h, with an antitubercular activity of MIC 0.008 µM, exhibited an excellent aqueous solubility of 104 µg/mL, which was 100-fold better than the potent DprE1 inhibitor Comp.1 (BTZ038), also more soluble than PBTZ169.
Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazinas/farmacologia , Tiazinas/farmacologia , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/síntese química , Antituberculosos/química , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazina , Piperazinas/síntese química , Piperazinas/química , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/química , Células VeroRESUMO
FLT3 inhibitors have been explored as a viable therapy for acute myeloid leukemia (AML). However, the clinical outcomes of these FLT3 inhibitors were underwhelming except AC220. Therefore, the development of novel FLT3 inhibitors with high potency against both FLT3-WT and FLT3-ITD mutants are strongly demanded at the present time. In this study, we designed and synthesized a series of novel N-(5-(tert-butyl)isoxazol-3-yl)-N'-phenylurea derivatives as FLT3 inhibitors. SAR studies focused on the fused rings led to the discovery of a series of compounds with high potency against FLT3-ITD-bearing MV4-11 cells and significantly inhibitory activity toward FLT3. Among these compounds, N-(5-(tert-butyl)isoxazol-3-yl)-N'-(4-(7-methoxyimidazo[1,2-a]pyridin-2-yl)phenyl)urea (16i), displayed acceptable aqueous solubility, desirable pharmacokinetic profile and high cytotoxicity selectivity against MV4-11 cells. This compound can inhibit phosphorylation of FLT3 and induce apoptosis in a concentration-dependent manner. Further in vivo antitumor studies showed that 16i led to complete tumor regression in the MV4-11 xenograft model at a dose of 60 mg/kg/d while without observable body weight loss. This study had provided us a new chemotype of FLT3 inhibitors as novel therapic candidates for AML.
Assuntos
Compostos de Fenilureia/química , Inibidores de Proteínas Quinases/química , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Meia-Vida , Humanos , Imuno-Histoquímica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/toxicidade , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/metabolismoRESUMO
BACKGROUND: AZD4547, a small-molecule inhibitor targeting the tyrosine kinase of Fibroblast Growth Factor Receptors (FGFRs), is currently under phase II clinical study for human subjects having breast cancer, while the underlying mechanism remains elusive. The aim of this study is to explore the potential mechanism by which AZD4547 inhibits breast tumor lung metastases at the level of the tumor microenvironment. METHODS: First, through in vitro experiments, we investigated the efficacy of the FGFRs inhibitor AZD4547 on 4T1 tumor cells for their proliferation, apoptosis, migration, and invasion. Second, by in vivo animal experiments, we evaluated the effects of AZD4547 on tumor growth and lung metastases in 4T1 tumor-bearing mice. Finally, we examined the impact of AZD4547 on the infiltration of myeloid-derived suppressor cells (MDSCs) in lung, spleens, peripheral blood and tumor. RESULTS: Through this study we found that AZD4547 could efficiently suppress tumor 4T1 cells through restraining their proliferation, blocking migration and invasion, and inducing apoptosis in vitro. In animal model we also demonstrated that AZD4547 was able to inhibit tumor growth and lung metastases, consistent with the decreased MDSCs accumulation in the tumor and lung tissues, respectively. Moreover, the reduced number of MDSCs in peripheral blood and spleens were also observed in the AZD4547-treated mice. Importantly, through the AZD4547 treatment, the CD4(+) and CD8(+) T-cells were significantly increased in tumor and spleens. CONCLUSION: Our studies showed that AZD4547 can inhibit breast cancer cell proliferation, induce its apoptosis and block migration and invasion in vitro and suppress tumor growth and lung metastases by modulating the tumor immunologic microenvironment in vivo.
Assuntos
Benzamidas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/imunologia , Células Mieloides/imunologia , Piperazinas/farmacologia , Pirazóis/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/patologia , Metástase NeoplásicaRESUMO
Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50=3.3µM, SI >30.3, 12b, EC50=3.5µM, SI >28.6, 10l, EC50=3.9µM, SI >25.6, 12o, EC50=4.5µM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents.
Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Piridinas/química , Antivirais/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Piridinas/síntese química , Piridinas/farmacologia , Piridinas/toxicidade , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
Specific biopharmaceutics classification investigation and study on phamacokinetic profile of a novel drug candidate (2-methylcarbamoyl-4-{4-[3- (trifluoromethyl) benzamido] phenoxy} pyridinium 4-methylbenzenesulfonate monohydrate, NCE) were carried out. Equilibrium solubility and intrinsic dissolution rate (IDR) of NCE were estimated in different phosphate buffers. Effective intestinal permeability (P(eff)) of NCE was determined using single-pass intestinal perfusion technique in rat duodenum, jejunum and ileum at three concentrations. Theophylline (high permeability) and ranitidine (low permeability) were also applied to access the permeability of NCE as reference compounds. The bioavailability after intragastrical and intravenous administration was measured in beagle dogs. The solubility of NCE in tested phosphate buffers was quite low with the maximum solubility of 81.73 µg/mL at pH 1.0. The intrinsic dissolution ratio of NCE was 1 × 10â»4 mg·min⻹·cm⻲. The P(eff) value of NCE in all intestinal segments was more proximate to the high-permeability reference theophylline. Therefore, NCE was classified as class II drug according to Biopharmaceutics Classification System due to its low solubility and high intestinal permeability. In addition, concentration-dependent permeability was not observed in all the segments, indicating that there might be passive transportation for NCE. The absolute oral bioavailability of NCE in beagle dogs was 26.75%. Therefore, dissolution promotion will be crucial for oral formulation development and intravenous administration route will also be suggested for further NCE formulation development. All the data would provide a reference for biopharmaceutics classification research of other novel drug candidates.
Assuntos
Absorção Intestinal , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Biofarmácia , Cães , Mucosa Intestinal/metabolismo , Masculino , Neoplasias/tratamento farmacológico , Permeabilidade , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , SolubilidadeRESUMO
N-Alkyl and heterocycle substituted 1,3-benzothiazin-4-one (BTZ) derivatives were synthesized. The anti-mycobacterial activities of these compounds were evaluated by determination of minimal inhibitory concentration (MIC) for Mycobacterium tuberculosis H37Ra and M. tuberculosis H37Rv. It was found that an extended or branched alkyl chain analog could enhance the potency, and activities of N-alkyl substituted BTZs were not affected by either nitro or trifluoromethyl at 6-position. Trifluoromethyl plays an important role in maintaining anti-tubercular activity in the piperazine or piperidine analogs. Compound 8o, which contains an azaspirodithiolane group, showed a MIC of 0.0001 µM against M. tuberculosis H37Rv, 20-fold more potent than BTZ043 racemate. These results suggested that the volume and lipophilicity of the substituents were important in maintaining activity. In addition, compound 8o was nontoxic to Vero cells and orally bioavailable in a preliminary pharmacokinetics study.
Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Tiazinas/química , Tiazinas/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/farmacocinética , Chlorocebus aethiops , Humanos , Ratos , Ratos Sprague-Dawley , Compostos de Espiro/síntese química , Compostos de Espiro/farmacocinética , Relação Estrutura-Atividade , Tiazinas/síntese química , Tiazinas/farmacocinética , Tuberculose/tratamento farmacológico , Células VeroRESUMO
A series of new 3-amino-5-sulfanyl-1,2,4-triazole and 2-amino-5-sulfanyl-1,3,4-thiadiazole derivatives have been synthesized and their cytotoxicities were evaluated on a panel of human cancer cell lines (BxPC-3, H1975, SKOV-3, A875, HCT116, etc.). The best one (compound 5m) exhibited activities with IC50 values ranging from 0.04 to 23.6 µM against nine human cancer cell lines. Further biological evaluation indicated that DNA replication was blocked by treatment with compound 5m in HCT116 cells.
Assuntos
Antineoplásicos/química , Antineoplásicos/toxicidade , Tiadiazóis/química , Tiadiazóis/toxicidade , Triazóis/química , Triazóis/toxicidade , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Triazóis/síntese químicaRESUMO
In the title compound, C8H10N2OS, the 3-(dimethyl-amino)-prop-2-en-1-one unit is approximately planar [give r.m.s. deviation] and the mean plane through the seven non-H atoms makes a dihedral angle of 8.88â (3)° with the thia-zole ring. The carbonyl and ring C=N double bonds adjacent to the carbonyl group are trans [N-C-C-O = 172.31â (15) °], while the conformation of the carbonyl and propene double bonds is cis [O-C-C-C = 2.2â (2)°]. In the crystal, short C-Hâ¯N and C-Hâ¯O inter-actions together with C-Hâ¯π inter-actions generate a three-dimensional network.
RESUMO
Hepatocellular carcinoma is one of the most common cancers in worldwide. We previously reported a novel thienopyridine derivative 3-amino-6-(3,4-dichlorophenyl) thieno[2,3-b]pyridine-2-carboxamide (SKLB70359) which possesses anticancer activity against hepatocellular carcinoma. In present study, we further investigated its anticancer activity and possible mechanism. The SKLB70359 treatment decreased the viability of a panel of hepatocellular carcinoma cell lines in a concentration- and time-dependent manner with IC(50) 0.4 ~ 2.5 µM. The mechanism study showed that SKLB70359 induced G0/G1 cell cycle arrest and then led to apoptotic cell death of HepG2 cell. The SKLB70359 induced G0/G1 cell cycle arrest was characterized by down-regulation of cyclin-dependent kinase 2 (CDK2), CDK4, CDK6 expression and up-regulation of p53, p21(WAF1). Activating of caspase-3 and caspase-9 was also observed. Meanwhile, proliferation inhibitory effect of SKLB70359 was associated with decreased level of phosphorylated p44/42 mitogen activated protein kinase (p44/42 MAPK) and phosphorylated retinoblastoma protein (Rb). Moreover, SKLB70359 exhibit less toxicity to non-cancer cells than tumor cells. In conclusion, the findings in this study suggested that SKLB70359 have potential anticancer efficacy via G0/G1 cell cycle arrest and apoptosis induction. Its potential to be a candidate of anticancer agent is worth being further investigated.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Piridinas/farmacologia , Tiofenos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Piridinas/química , Piridinas/uso terapêutico , Proteína do Retinoblastoma/metabolismo , Tiofenos/química , Tiofenos/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Regulação para CimaRESUMO
A series of novel benzothiazole-2-thiol derivatives were synthesized and their structures determined by 1H-NMR, 13C-NMR and HRMS (ESI). The effects of all compounds on a panel of different types of human cancer cell lines were investigated. Among them, pyridinyl-2-amine linked benzothiazole-2-thiol compounds 7d, 7e, 7f and 7i exhibited potent and broad-spectrum inhibitory activities. Compound 7e displayed the most potent anticancer activity on SKRB-3 (IC(50) = 1.2 nM), SW620 (IC(50) = 4.3 nM), A549 (IC(50) = 44 nM) and HepG2 (IC(50) = 48 nM) and was found to induce apoptosis in HepG2 cancer cells.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzotiazóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , HumanosRESUMO
A novel series of N-methylpicolinamide-4-thiol derivatives were synthesized and evaluated on human cancer cell lines. Among them, compound 6p displayed potent and broad-spectrum anti-proliferative activities in vitro on some human cancer cell lines, even better than sorafenib. The advanced kinase inhibitory assays showed that compound 6p could selectively inhibit Aurora-B kinase. The biological results were rationalized by the molecular docking study, which indicated the stable interactions of 6p with the Aurora-B kinase.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/farmacologia , Antineoplásicos/química , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/químicaRESUMO
In the title compound, C(15)H(18)N(4)O(7), the morpholine rings adopt chair conformations. The benzene ring forms dihedral angles of 55.94â (7) and 63.19â (7)° with the planes through the C atoms of the two morpholine rings.
RESUMO
Antagonizing angiogenesis-related receptor tyrosine kinase is a promising therapeutic strategy in oncology. In present study, we designed and synthesized a novel vascular endothelial growth factor receptor (VEGFR) inhibitor N-methyl-4-(4-(3-(trifluoromethyl) benzamido) phenoxy) picolinamide SKLB610 that potently suppresses human tumor angiogenesis. SKLB610 inhibited angiogenesis-related tyrosine kinase VEGFR2, fibroblast growth factor receptor 2 (FGFR2) and platelet-derived growth factor receptor (PDGFR) at rate of 97%, 65% and 55%, respectively, at concentration of 10µM in biochemical kinase assays. In vitro, SKLB610 showed more selective inhibition of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) proliferation, and this proliferation inhibitory effect was associated with decreased phosphorylation of VEGFR2 and p42/44 mitogen-activated protein kinase (p42/44 MAPK). Antiangiogenic evaluation showed that SKLB610 inhibited the HUVECs capillary-tube formation on Matrigel in vitro and the sub-intestinal vein formation of zebrafish in vivo. Moreover, SKLB610 inhibited a panel of human cancer cells proliferation in a concentration-dependent manner and human non-small cell lung cancer cell line A549 and human colorectal cancer cell line HCT116 were most sensitive to SKLB610 treatment. In vivo, chronic intraperitoneally administration of SKLB610 at dose of 50mg/kg/d resulted in significant inhibition in the growth of established human A549 and HCT116 tumor xenografts in nude mice without exhibit toxicity. Histological analysis showed significant reductions in intratumoral microvessel density (CD31 staining) of 43-55% relative to controls depending on the specific tumor xenografts. In conclusion, the present study demonstrated that SKLB610 exhibited its antitumor activity as a multi-targeted inhibitor with more potent inhibition of VEGFR2 activity. Its potential to be a candidate of anticancer agent is worth being further investigated.