Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Neurobiol ; 43(8): 3897-3913, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751132

RESUMO

This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.


Assuntos
Fatores de Crescimento Neural , Humanos , Fatores de Crescimento Neural/fisiologia , Bibliometria , Pesquisa Biomédica/tendências
2.
CNS Neurosci Ther ; 30(2): e14609, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334011

RESUMO

BACKGROUND: Neuropathic pain is a prevalent and highly debilitating condition that impacts millions of individuals globally. Neuroinflammation is considered a key factor in the development of neuropathic pain. Accumulating evidence suggests that protein tyrosine phosphatase 1B (PTP1B) plays a crucial role in regulating neuroinflammation. Nevertheless, the specific involvement of PTP1B in neuropathic pain remains largely unknown. This study aims to examine the impact of PTP1B on neuropathic pain and unravel the underlying molecular mechanisms implicated. METHODS: In the current study, we evaluated the paw withdrawal threshold (PWT) of male rats following spared nerve injury (SNI) to assess the presence of neuropathic pain. To elucidate the underlying mechanisms, western blotting, immunofluorescence, and electron microscopy techniques were employed. RESULTS: Our results showed that SNI significantly elevated PTP1B levels, which was accompanied by an increase in the expression of endoplasmic reticulum (ER) stress markers (BIP, p-PERK, p-IRE1α, and ATF6) and phosphorylated NF-κB in the spinal dorsal horn. SNI-induced mechanical allodynia was impaired by the treatment of intrathecal injection of PTP1B siRNA or PTP1B-IN-1, a specific inhibitor of PTP1B. Moreover, the intrathecal administration of PTP1B-IN-1 effectively suppressed the expression of ER stress markers (BIP, p-PERK/p-eIF2α, p-IRE1α, and ATF6), leading to the inhibition of NF-κB, microglia, and astrocytes activation, as well as a decrease in pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß. However, these effects were reversed by intrathecal administration of tunicamycin (Tm, an inducer of ER stress). Additionally, intrathecal administration of Tm in healthy rats resulted in the development of mechanical allodynia and the activation of NF-κB-mediated neuroinflammatory signaling. CONCLUSIONS: The upregulation of PTP1B induced by SNI facilitates the activation of NF-κB and glial cells via ER stress in the spinal dorsal horn. This, in turn, leads to an increase in the production of pro-inflammatory cytokines, thereby contributing to the development and maintenance of neuropathic pain. Therefore, targeting PTP1B could be a promising therapeutic strategy for the treatment of neuropathic pain.


Assuntos
NF-kappa B , Neuralgia , Animais , Masculino , Ratos , Citocinas , Estresse do Retículo Endoplasmático , Endorribonucleases/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Neuralgia/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Proteínas Serina-Treonina Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/uso terapêutico , Ratos Sprague-Dawley , Subunidade p50 de NF-kappa B/metabolismo
3.
CNS Neurosci Ther ; 30(9): e70067, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39328008

RESUMO

AIMS: Neuropathic pain remains a significant unmet medical challenge due to its elusive mechanisms. Recent clinical observations suggest that vitamin D (VitD) holds promise in pain relief, yet its precise mechanism of action is still unclear. This study explores the therapeutical role and potential mechanism of VitD3 in spared nerve injury (SNI)-induced neuropathic pain rat model. METHODS: The analgesic effects and underlying mechanisms of VitD3 were evaluated in SNI and naïve rat models. Mechanical allodynia was assessed using the Von Frey test. Western blotting, immunofluorescence, biochemical assay, and transmission electron microscope (TEM) were employed to investigate the molecular and cellular effects of VitD3. RESULTS: Ferroptosis was observed in the spinal cord following SNI. Intrathecal administration of VitD3, the active form of VitD, activated the vitamin D receptor (VDR), suppressed ferroptosis, and alleviated mechanical nociceptive behaviors. VitD3 treatment preserved spinal GABAergic interneurons, and its neuroprotective effects were eliminated by the ferroptosis inducer RSL3. Additionally, VitD3 mitigated aberrant mitochondrial morphology and oxidative metabolism in the spinal cord. Mechanistically, VitD3 inhibited SNI-induced activation of spinal PKCα/NOX4 signaling. Inhibition of PKCα/NOX4 signaling alleviated mechanical pain hypersensitivity, accompanied by reduced ferroptosis and mitochondrial dysfunction in SNI rats. Conversely, activation of PKCα/NOX4 signaling in naïve rats induced hyperalgesia, ferroptosis, loss of GABAergic interneurons, and mitochondrial dysfunction in the spinal cord, all of which were reversed by VitD3 treatment. CONCLUSIONS: Our findings provide evidence that VitD3 attenuates neuropathic pain by preserving spinal GABAergic interneurons through the suppression of mitochondria-associated ferroptosis mediated by PKCα/NOX4 signaling, probably via VDR activation. VitD, alone or in combination with existing analgesics, presents an innovative therapeutic avenue for neuropathic pain.


Assuntos
Colecalciferol , Ferroptose , Mitocôndrias , Neuralgia , Transdução de Sinais , Animais , Masculino , Ratos , Colecalciferol/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/antagonistas & inibidores , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
4.
CNS Neurosci Ther ; 30(5): e14745, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38715326

RESUMO

BACKGROUND: Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS: In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS: We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS: HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS: Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.


Assuntos
Epigênese Genética , Inibidores de Histona Desacetilases , Histona Desacetilases , Neuralgia , Humanos , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
5.
Front Neurol ; 14: 1257648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073627

RESUMO

Objective: To create and authenticate MRI-based radiomic signatures to identify dorsal root ganglia (DRG) lesions in post-herpetic neuralgia (PHN) patients generalizable and interpretable. Method: This prospective diagnostic study was conducted between January 2021 and February 2022. Lesioned DRG in patients with PHN and normal DRG in age-, sex-, height-, and weight-matched healthy controls were selected for assessment and divided into two groups (8:2) randomly: training and testing sets. The least absolute shrinkage and selection operator algorithm was employed to generate feature signatures and construct a model, followed by the assessment of model efficacy using the area under the curve (AUC) of the receiver operating characteristic (ROC), as well as sensitivity and specificity metrics. Results: The present investigation involved 30 patients diagnosed with postherpetic neuralgia (PHN), consisting of 18 males and 12 females (mean age 60.70 ± 10.18 years), as well as 30 healthy controls, comprising 18 males and 12 females (mean age 58.13 ± 10.54 years). A total of 98 DRG were randomly divided into two groups (8:2), namely a training set (n = 78) and a testing set (n = 20). Five radiomic features were chosen to construct the models. In the training dataset, the area under the curve (AUC) was 0.847, while the sensitivity and specificity were 71.79 and 97.44%, respectively. In the test dataset, the AUC was 0.87, and the sensitivity and specificity were 80.00 and 100.00%, respectively. Conclusion: An MRI-based radiomic signatures model has the capacity to uncover the micro-change of damaged DRG in individuals afflicted with postherpetic neuralgia.

6.
AMB Express ; 13(1): 108, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803181

RESUMO

Postherpetic neuralgia (PHN) is a prevalent, intricate, and intractable form of neuropathic pain. The available evidence indicates that alterations in the gut microbiota are significant environmental determinants in the development of chronic neuropathic pain. Nevertheless, the correlation between the gut microbiota and PHN remains elusive. A cross-sectional study was performed on a cohort of 27 patients diagnosed with PHN and 27 matched healthy controls. Fecal samples were collected and subjected to microbiota analysis using 16S ribosomal RNA gene sequencing. Comparable levels of bacterial richness and diversity were observed in the gut microbiota of PHN patients and healthy controls. A significant difference was observed in 37 genera between the two groups. Furthermore, the LEfSe method revealed that the abundance levels of Escherichia-Shigella, Streptococcus, Ligilactobacillus, and Clostridia_UCG-014_unclassified were elevated in PHN patients, while Eubacterium_hallii_group, Butyricicoccus, Tyzzerella, Dorea, Parasutterella, Romboutsia, Megamonas, and Agathobacter genera were reduced in comparison to healthy controls. Significantly, the discriminant model utilizing the predominant microbiota exhibited efficacy in distinguishing PHN patients from healthy controls, with an area under the curve value of 0.824. Moreover, Spearman correlation analysis demonstrated noteworthy correlations between various gut microbiota and clinical symptoms, including disease course, anxiety state, sleep quality, heat pain, pain intensity, and itching intensity. Gut microbiota dysbiosis exists in PHN patients, microbiome differences could be used to distinguish PHN patients from normal healthy individuals with high sensitivity and specificity, and altered gut microbiota are related to clinical manifestations, suggesting potentially novel prevention and therapeutic directions of PHN.

7.
Biomed Pharmacother ; 169: 115889, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984302

RESUMO

BACKGROUND: Excessive manganese (Mn) exposure has been linked to neurotoxicity, cognitive impairments. Neurotrophic Receptor Kinase 1 (NTRK1) encodes Tropomyosin kinase A (TrkA), a neurotrophic receptor, as a mediator of neuron differentiation and survival. Insulin-like growth factor 2 (IGF2), a pivotal member of the insulin gene family, plays a crucial role in brain development and neuroprotection. Despite this knowledge, the precise mechanisms through which NTRK1 and IGF2 influence cell responses to Mn-induced neuronal damage remain elusive. METHODS: Cell apoptosis was assessed using CCK8, TUNEL staining, and Western blot analysis of cleaved Caspase-3. Lentiviral vectors facilitated NTRK1 overexpression, while small interfering RNAs (siRNAs) facilitated IGF2 knockdown. Real-time Quantitative PCR (qPCR) determined gene expression levels, while Western blotting measured protein expression. RESULTS: The study reveals that NTRK1 inhibits MnCl2-induced apoptosis in SH-SY5Y cells. NTRK1 overexpression significantly upregulated IGF2 expression, and subsequent siRNA-IGF2 experiments confirmed IGF2's pivotal role in NTRK1-mediated neuroprotection. Notably, the study identifies that NTRK1 regulates the expression of IGF2 in the neuroprotective mechanism with the involvement of ER stress pathways. DISCUSSION: The study reveals NTRK1's neuroprotective role via IGF2 against Mn-induced neurotoxicity and ER stress modulation in SH-SY5Y cells. These findings offer insights into potential therapies for neurodegenerative disorders related to Mn exposure and NTRK1 dysfunction, driving future research in this domain.


Assuntos
Intoxicação por Manganês , Neuroblastoma , Humanos , Manganês/toxicidade , Linhagem Celular Tumoral , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Fator de Crescimento Insulin-Like II/genética
8.
J Cereb Blood Flow Metab ; 43(5): 694-711, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36635875

RESUMO

Post-stroke depression exacerbates neurologic deficits and quality of life. Depression after ischemic stroke is known to some extent. However, depression after intracerebral hemorrhage (ICH) is relatively unknown. Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury has neuroprotective effects in animal models, but its impact after ICH is unknown. In this study, we investigated the effect of EE on long-term functional outcomes in mice subjected to collagenase-induced striatal ICH. Mice were subjected to ICH with the standard environment (SE) or ICH with EE for 6 h/day (8:00 am-2:00 pm). Depressive, anxiety-like behaviors and cognitive tests were evaluated on day 28 with the sucrose preference test, tail suspension test, forced swim test, light-dark transition experiment, morris water maze, and novel object recognition test. Exposure to EE improved neurologic function, attenuated depressive and anxiety-like behaviors, and promoted spatial learning and memory. These changes were associated with increased expression of transcription factor Nrf2 and brain-derived neurotrophic factor (BDNF) and inhibited glutaminase activity in the perihematomal tissue. However, EE did not change the above behavioral outcomes in Nrf2-/- mice on day 28. Furthermore, exposure to EE did not increase BDNF expression compared to exposure to SE in Nrf2-/- mice on day 28 after ICH. These findings indicate that EE improves long-term outcomes in sensorimotor, emotional, and cognitive behavior after ICH and that the underlying mechanism involves the Nrf2/BDNF/glutaminase pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glutaminase , Qualidade de Vida , Hemorragia Cerebral/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA