Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650384

RESUMO

Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid ß, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.

2.
Alzheimers Dement ; 20(3): 2058-2071, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215053

RESUMO

INTRODUCTION: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. METHODS: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. RESULTS: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. DISCUSSION: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. HIGHLIGHTS: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.


Assuntos
Doença de Alzheimer , População Norte-Americana , Humanos , Doença de Alzheimer/genética , Projetos Piloto , Asiático/genética , Canadá , Fatores de Risco
3.
J Vis Exp ; (207)2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829135

RESUMO

The blood-brain (BBB) is a crucial system that regulates selective brain circulation with the periphery, as an example, allowing necessary nutrients to enter and expel excessive amino acids or toxins from the brain. To model how the BBB can be compromised in diseases like vascular dementia (VaD) or Alzheimer's disease (AD), researchers developed novel methods to model vessel dilatation. A compromised BBB in these disease states can be detrimental and result in the dysregulation of the BBB leading to untoward and pathological consequences impacting brain function. We were able to modify an existing technique that enabled us to inject directly into the Cisterna magna (CM) to induce dilatation of blood vessels using elastase, and disrupt the tight junctions (TJ) of the BBB. With this method, we were able to see various metrics of success over previous techniques, including consistent blood vessel dilatation, reduced mortality or improved recovery, and improving the fill/opacifying agent, a silicone rubber compound, delivery for labeling blood vessels for dilatation analysis. This modified minimally invasive method has had promising results, with a 19%-32% increase in sustained dilatation of large blood vessels in mice from 2 weeks to 3 months post-injection. This improvement contrasts with previous studies, which showed increased dilatation only at the 2 week mark. Additional data suggests sustained expansion even after 9.5 months. This increase was confirmed by comparing the diameter of blood vessels of the elastase and the vehicle-injected group. Overall, this technique is valuable for studying pathological disorders that affect the central nervous system (CNS) using animal models.


Assuntos
Barreira Hematoencefálica , Modelos Animais de Doenças , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Elastase Pancreática , Transtornos Cerebrovasculares , Cisterna Magna , Masculino , Demência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA