Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tohoku J Exp Med ; 259(2): 163-172, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36450479

RESUMO

Proinflammatory cytokines, reactive oxygen species and imbalance of neurotransmitters are involved in the pathophysiology of angiotensin II-induced hypertension. The hypothalamic paraventricular nucleus (PVN) plays a vital role in hypertension. Evidences show that microglia are activated and release proinflammatory cytokines in angiocardiopathy. We hypothesized that angiotensin II induces PVN microglial activation, and the activated PVN microglia release proinflammatory cytokines and cause oxidative stress through nuclear factor-kappa B (NF-κB) pathway, which contributes to sympathetic overactivity and hypertension. Male Sprague-Dawley rats (weight 275-300 g) were infused with angiotensin II to induce hypertension. Then, rats were treated with bilateral PVN infusion of microglial activation inhibitor minocycline, NF-κB activation inhibitor pyrrolidine dithiocarbamate or vehicle for 4 weeks. When compared to control groups, angiotensin II-induced hypertensive rats had higher mean arterial pressure, PVN proinflammatory cytokines, and imbalance of neurotransmitters, accompanied with PVN activated microglia. These rats also had more PVN gp91phox (source of reactive oxygen species production), and NF-κB p65. Bilateral PVN infusion of minocycline or pyrrolidine dithiocarbamate partly or completely ameliorated these changes. This study indicates that angiotensin II-induced hypertensive rats have more activated microglia in PVN, and activated PVN microglia release proinflammatory cytokines and result in oxidative stress, which contributes to sympathoexcitation and hypertensive response. Suppression of activated PVN microglia by minocycline or pyrrolidine dithiocarbamate attenuates inflammation and oxidative stress, and improves angiotensin II-induced hypertension, which indicates that activated microglia promote hypertension through activated NF-κB. The findings may offer hypertension new strategies.


Assuntos
Hipertensão , Minociclina , Ratos , Masculino , Animais , Minociclina/efeitos adversos , Microglia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/metabolismo , Ratos Sprague-Dawley , Hipertensão/tratamento farmacológico , Citocinas/metabolismo , Neurotransmissores/efeitos adversos , Neurotransmissores/metabolismo
2.
Toxicol Appl Pharmacol ; 437: 115893, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085591

RESUMO

Background Oxidative stress and inflammation play important roles in the development of diabetes. Metformin (MET) is considered as the first-line therapy for patients with type 2 diabetes (T2D). Hypothalamic paraventricular nucleus (PVN) and hypothalamic arcuate nucleus (ARC) are vital in obesity and diabetes. However, there have been few studies on the effects of MET on inflammatory reaction and oxidative stress in the PVN and ARC of T2D diabetic rats. Methods Male Sprague-Dawley (SD) rats were fed with high-fat diet (HFD), and intraperitoneally injected with low-dose streptozotocin (STZ, 30 mg/kg) at 6th week to induce T2D diabetes. After injection of STZ, they were fed with HFD continually. Starting from the 8th week of HFD feeding, T2D rats received intragastrical administration of MET (150 mg/kg/day) in addition to the HFD for another 8 weeks. At the end of the 15th week, the rats were anaesthetized to record the sympathetic nerve activity and collect blood and tissue samples. Results In comparison with control rats, T2D diabetic rats had higher levels of pro-inflammatory cytokines (PICs) and excessive oxidative stress in the PVN and ARC, accompanied with more activated astrocytes. The renal sympathetic nerve activity (RSNA) and the plasma norepinephrine (NE) increased in T2D diabetic rats. The expression of tyrosine hydroxylase (TH) increased and the expression of 67-kDa isoform of glutamate decarboxylase (GAD67) decreased in T2D diabetic rats. Supplementation of MET decreased blood glucose, suppressed RSNA, decreased PICs (TNF-α, IL-1ß and IL-6) in PVN and ARC, attenuated oxidative stress and activation of astrocytes in ARC and PVN of T2D diabetic rats, as well as restored the balance of neurotransmitter synthetase. The number of Fra-LI (chronic neuronal excitation marker) positive neurons in the ARC and PVN of T2D diabetic rats increased. Chronic supplementation of MET also decreased the number of Fra-LI positive neurons in the ARC and PVN of T2D diabetic rats. Conclusion These findings suggest that the PVN and ARC participate in the beneficial effects of MET in T2D diabetic rats, which is possibly mediated via down-regulating of inflammatory molecules, attenuating oxidative stress and restoring the balance of neurotransmitter synthetase by MET in the PVN and ARC.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Toxicol Appl Pharmacol ; 429: 115701, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453990

RESUMO

Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.


Assuntos
Anti-Hipertensivos/farmacologia , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Butiratos/sangue , Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Disbiose , Hipertensão/metabolismo , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismo
4.
J Cardiovasc Pharmacol ; 77(2): 170-181, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538532

RESUMO

ABSTRACT: Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 µL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Parenterais , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Xantofilas/administração & dosagem
5.
Toxicol Appl Pharmacol ; 394: 114950, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147540

RESUMO

The hypothalamic paraventricular nucleus (PVN) plays crucial roles in central cardiovascular regulation. Increasing evidence in humans and rodents shows that vitamin D intake is important for achieving optimal cardiovascular function. The purpose of this study was to investigate whether calcitriol, an active form of vitamin D, improves autonomic and cardiovascular function in hypertensive rats and whether PVN oxidative stress and inflammation are involved in these beneficial effects. Male spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were treated with either calcitriol (40 ng/day) or vehicle (0.11 µL/h) through chronic PVN infusion for 4 weeks. Blood pressure and heart rate were recorded continuously by radiotelemetry. PVN tissue, heart and plasma were collected for molecular and histological analysis. Compared to WKY rats, SHR exhibited increased systolic blood pressure, sympathetic drive, and cardiac hypertrophy and remodeling. These were associated with higher mRNA and protein expression levels of high mobility box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), proinflammatory cytokines, NADPH oxidase subunit in the PVN. In addition, increased norepinephrine in plasma, elevated reactive oxygen species levels and activation of microglia in the PVN were also observed in SHR. Chronic calcitriol treatment ameliorated these changes but not in WKY rats. Our results demonstrate that chronic infusion of calcitriol in the PVN ameliorates hypertensive responses, sympathoexcitation and retains cardiovascular function in SHR. Reduced inflammation and oxidative stress within the PVN are involved in these calcitriol-induced effects.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Doenças do Sistema Nervoso Autônomo/tratamento farmacológico , Calcitriol/uso terapêutico , Agonistas dos Canais de Cálcio/uso terapêutico , Hipertensão/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Doenças do Sistema Nervoso Autônomo/genética , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/genética , Masculino , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
6.
Toxicol Appl Pharmacol ; 394: 114953, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32165127

RESUMO

Exercise training is one of the major non-pharmacological treatments for hypertension. However, the central mechanism by which exercise training attenuates the hypertensive responses remains unclear. Irisin is a muscle-secreted cytokine derived from fibronectin type III domain containing 5 (FNDC5) that will be released into the circulation during exercise. We hypothesized that irisin may play a role in the blood pressure regulation by exercise. To examine the hypothesis, our study investigated the effect of irisin on hypertension and its central mechanism. The study was performed in spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats. We found that intravenous injection of irisin effectively reduced blood pressure, plasma norepinephrine, paraventricular nucleus (PVN) levels of neuronal activation, oxidative stress and inflammation in SHRs. Moreover, irisin activated nuclear factor E2-related factor-2 (Nrf2) and restored the imbalance of neurotransmitters in the PVN. Our study also found PVN knockdown of Nrf2 abolished the protective effects of irisin on hypertension. These findings demonstrate irisin can improve hypertension via Nrf2-mediated antioxidant in the PVN.


Assuntos
Anti-Hipertensivos/farmacologia , Fibronectinas/farmacologia , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/sangue , Estresse Oxidativo/efeitos dos fármacos , Esforço Físico , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
7.
Neuroendocrinology ; 110(11-12): 899-913, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31671427

RESUMO

BACKGROUND: Inflammation and oxidative stress play important roles in energy imbalance and its complications. Recent research indicates that hypothalamic inflammation may contribute to the pathogenesis of metabolic syndrome and cardiac dysfunction, but the mechanisms remain unclear. We hypothesized that suppression of the proinflammatory IKKß/NF-κB pathway in the hypothalamus can improve energy balance and cardiac function in type 2 diabetic (T2D) rats. METHODS: Normal and T2D rats received bilateral hypothalamic arcuate nucleus (ARC) infusions of the IKKß inhibitor SC-514 or vehicle via osmotic minipump. Metabolic phenotyping, immunohistochemical analyses, and biochemical analyses were used to investigate the outcomes of inhibition of the hypothalamic IKKß. Echocardiography and glucometer were used for measuring cardiac function and blood glucose, respectively. Blood samples were collected for the evaluation of circulating proinflammatory cytokines. Heart was harvested for cardiac morphology evaluations. The ARC was harvested and analyzed for IKKß, NF-κB, proinflammatory cytokines, reactive oxygen species (ROS), and NAD(P)H (gp91phox, p47phox) oxidase activity levels and neuropeptides. RESULTS: Compared with normal rats, T2D rats were characterized by hyperglycemia, hyperinsulinemia, glucose intolerance, cardiac dysfunction, as well as higher ARC levels of IKKß, NF-κB, proinflammatory cytokines, ROS, gp91phox, and p47phox. ARC infusion of the IKKß inhibitor SC-514 attenuated all these changes in T2D rats, but not in normal rats. CONCLUSIONS: Our results indicate that the hypothalamic IKKß/NF-κB pathway plays a key role in modulating energy imbalance and cardiac dysfunction, suggesting its potential therapeutic role during type 2 diabetes mellitus.


Assuntos
Núcleo Arqueado do Hipotálamo , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/imunologia , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Quinase I-kappa B/antagonistas & inibidores , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
8.
J Cardiovasc Pharmacol ; 74(4): 336-347, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31356536

RESUMO

Melatonin, the receptors for which are abundant in the hypothalamic paraventricular nucleus (PVN), can protect the heart from myocardial ischemia-reperfusion (MI/R) injury. The aim of this study was to determine whether the infusion of melatonin into the PVN protects the heart from MI/R injury by suppressing oxidative stress or regulating the balance between proinflammatory cytokines and anti-inflammatory cytokines in MI/R rats. Male Sprague-Dawley rats were treated with a bilateral PVN infusion of melatonin. MI/R operation was performed 1 week after infusion. At the end of the third week after the infusion, all the rats were euthanized. This was followed by immunohistochemistry and immunofluorescence studies of the rats. MI/R rats showed larger infarct size, increased left ventricular (LV) end-diastolic volume, and decreased LV ejection fraction and LV fractional shortening. Moreover, MI/R rats had a higher level of norepinephrine in the plasma, heart, and PVN; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, and NF-κB activity; and lower PVN levels of copper/zinc superoxide dismutase (Cu/Zn-SOD) and IL-10 compared with the sham group. Melatonin infusion in PVN reduced LV end-diastolic volume, norepinephrine, reactive oxygen species, NOX2, NOX4, IL-1ß, and NF-κB activity, and increased LV ejection fraction, LV fractional shortening, Cu/Zn-SOD, and IL-10. Overall, these results suggest that the infusion of melatonin ameliorates sympathetic nerve activity and MI/R injury by attenuating oxidative stress and inflammatory cytokines in the PVN of MI/R rats.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Melatonina/administração & dosagem , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Infusões Intraventriculares , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Volume Sistólico/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos
9.
J Neuroinflammation ; 15(1): 95, 2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29573749

RESUMO

BACKGROUND: Inflammation has been implicated in the development of cardiovascular disease. We determined whether nod-like receptor with pyrin domain containing 3 (NLRP3) involved in the process of prehypertension, central blockade of NLRP3 decreased inflammation reaction, regulated neurohormonal excitation, and delayed the progression of prehypertension. METHODS: Prehypertensive rats were induced by 8% salt diet. The rats on high-salt diet for 1 month were administered a specific NLRP3 blocker in the hypothalamic paraventricular nucleus (PVN) for 4 weeks. ELISA, western blotting, immunohistochemistry, and flow cytometry were used to measure NLRP3 cascade proteins, pro-inflammation cytokines (PICs), chemokine ligand 2 (CCL2), C-X-C chemokine receptor type 3 (CXCR3), vascular cell adhesion molecule 1 (VCAM-1), neurotransmitters, and leukocytes count detection, respectively. RESULTS: NLRP3 expression in PVN was increased significantly in prehypertensive rats, accompanied by increased number of microglia, CD4+, CD8+ T cell, and CD8+ microglia. Expressions of PICs, CCL2, CXCR3, and VCAM-1 significantly increased. The balance between 67-kDa isoform of glutamate decarboxylase (GAD67) and tyrosine hydroxylase (TH) was damaged. Plasma norepinephrine (NE) in prehypertensive rats was increased and gamma-aminobutyric acid (GABA) was reduced. NLRP3 blockade significantly decreased blood pressure, reduced PICs, CCL2, VCAM-1 expression in PVN, and restored neurotransmitters. Blood pressure and inflammatory markers were upregulated after termination of central blockage NLRP3. CONCLUSIONS: Salt-induced prehypertension is partly due to the role of NLRP3 in PVN. Blockade of brain NLRP3 attenuates prehypertensive response, possibly via downregulating the cascade reaction triggered by inflammation and restoring the balance of neurotransmitters.


Assuntos
Citocinas/metabolismo , Hipertensão/complicações , Inflamação/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurotransmissores/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Glutamato Descarboxilase/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
Toxicol Appl Pharmacol ; 333: 100-109, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28842207

RESUMO

Reactive oxygen species (ROS) in the paraventricular nucleus (PVN) play a pivotal role in the pathogenesis of hypertension. Nuclear factor E2-related factor-2 (Nrf2) is an important transcription factor that modulates cell antioxidant defense response against oxidative stress. The present study aimed to explore the efficacy of PVN administration of tert-butylhydroquinone (tBHQ), a selective Nrf2 activator, in hypertensive rats. 16-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were used in this study. These rats were chronic bilateral PVN infusion of tBHQ (0.8µg/day), or oxygen free radical scavenger tempol (20µg/h), or vehicle for 2weeks. SHR rats had higher mean arterial pressure (MAP), plasma norepinephrine (NE) levels, and sympathetic nerve activity (RSNA) and lower PVN levels of Nrf2, hemeoxygenase-1 (HO-1), superoxide dismutase-1 (SOD1) and catalase (CAT) as compared with those in the WKY group. Bilateral PVN infusion of tBHQ or tempol significantly reduced MAP, RSNA, plasma NE levels in SHR rats. In addition, tBHQ treatment enhanced the nuclear accumulation of Nrf2 and increased the expression of HO-1, CAT and SOD1 in SHR rats. Furthermore, tBHQ attenuated PVN levels of ROS, the expression of proinflammatory cytokines and restored the imbalance of neurotransmitters in PVN. Knockdown of Nrf2 in the PVN by adeno-associated virus mediated small interfering RNA abrogated the protective effects of tBHQ on hypertension. These findings suggest that PVN administration of tBHQ can attenuate hypertension by activation of the Nrf2-mediated signaling pathway.


Assuntos
Anti-Hipertensivos/farmacologia , Hidroquinonas/farmacologia , Hipertensão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Adenoviridae/genética , Animais , Anti-Hipertensivos/uso terapêutico , Pressão Arterial/efeitos dos fármacos , Hidroquinonas/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Interferente Pequeno/genética , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos
11.
Toxicol Appl Pharmacol ; 284(3): 315-22, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25759242

RESUMO

We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar-Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (ß-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Pirrolidinas/farmacologia , Tiocarbamatos/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Pressão Arterial/efeitos dos fármacos , Biomarcadores/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/imunologia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Hipertensão/complicações , Hipertensão/imunologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Núcleo Hipotalâmico Paraventricular/imunologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
12.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 35(1): 98-103, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25790683

RESUMO

OBJECTIVE: To observe the effect of gastric dynamics by transcutaneous electrical acupoint stimulation (TEAS) combined general anesthesia when controlled hypotension dropped to 60% of the mean arterial prenssure (MAP) baseline, and to provide experimental evidence for organ protection in clinical controlled hypotension. METHODS: Eighteen male beagles were randomly divided into three groups, the general anesthesia group (blank), the general anesthesia induced controlled hypotension group (control), and the general anesthesia combined TEAS induced controlled hypotension group (experiment), 6 in each group. Controlled hypotension was performed in the latter two groups with isoflurane inhalation and intravenous injection of sodium nitroprusside (SNP). The mean arterial pressure (MAP) was lowered to 60% of the MAP baseline and kept for 60 min. Controlled hypotension was not performed in Beagles of the control group. For Beagles in the experiment group, TEAS [2/100 Hz, (4 ± 1) mA] was applied to bilateral Hegu (LI4), Quchi (LI11), Zusanli (ST36), and Sanyinjiao (SP6) from stable physiological conditions to the end of maintaining stages. Changes of EGG frequencies and EGG amplitudes were monitored. Serum levels of gastrin (GAS) and motilin (MTL) were also detected at corresponding time points during and after experiment. RESULTS: As for the pressure control effect of TEAS combined general anesthesia in the controlled hypotension, during the process of controlled hypotension (T1-T4), MAP levels of two controlled pressure groups remained relatively stable, and were kept at 60% of the MAP baseline. When the blood pressure dropped to the target low MAP and maintained at 60 min (T1-T4), EGG amplitudes of Beagles in all the three groups showed decreasing tendency. But it was more obviously lower than its basic level in the control group (P <0.05), while it was not obviously decreased in the experiment group (P < 0.05). EGG frequencies of Beagles in all the three groups showed no obvious change during this stage. By the end of the MAP rising stage (T8), the EGG amplitude of the experimental group was significantly higher than that of the control group and the blank group (P < 0.05), while it didn' t show any obvious increase in the control group. During this period, EGG frequencies of the two controlled hypotension groups decreased more than those of the blank group. Two h after rising blood pressure (at T9), EGG amplitudes and frequencies in the two controlled hypotension groups basically restored to their respective baselines and levels of the blank group at T9. At 2 h (T9) after controlled hypotension, serum levels of GAS and MTL were lower than those of basic levels in the two controlled hypotension groups (P <0.05). However, serum levels of GAS and MTL had an increasing trend in the two controlled hypotension groups at 24-72 h (T10-T12). Besides, the increasing speed and amplitude was better in experiment group than in the control group at T10-T12. However, there was no statistical difference between the two groups (P > 0.05). At 72 h (T12) serum levels of GAS and MTL had basically restored to their basic levels in the two controlled hypotension groups and that of the blank control group. CONCLUSION: EGG amplitudes could be effectively improved in TEAS combined general anesthesia for controlled hypotension at 60% of the MAP baseline, the recovery of the serum GAS level accelerated, gastric power improved and stomach protected.


Assuntos
Anestesia/métodos , Hipotensão Controlada , Estimulação Elétrica Nervosa Transcutânea , Pontos de Acupuntura , Anestesia Geral , Animais , Artérias , Cães , Gastrinas , Masculino , Motilina , Nitroprussiato
13.
Toxicol Appl Pharmacol ; 274(3): 436-44, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24342267

RESUMO

The renin-angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5µg/h) or vehicle for 4weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1ß and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy.


Assuntos
Cardiomegalia/tratamento farmacológico , Enalaprilato/uso terapêutico , Hipertensão/tratamento farmacológico , Angiotensina II/efeitos adversos , Animais , Cardiomegalia/induzido quimicamente , Quimiocina CCL2/metabolismo , Enalaprilato/administração & dosagem , Ácido Glutâmico/sangue , Coração/efeitos dos fármacos , Hipertensão/induzido quimicamente , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Losartan/farmacologia , Masculino , Neurotransmissores/metabolismo , Norepinefrina/sangue , Tamanho do Órgão/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Ácido gama-Aminobutírico/sangue
14.
Toxicol Appl Pharmacol ; 276(2): 115-20, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24576725

RESUMO

AIMS: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin-angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. METHODS AND RESULTS: Male Sprague-Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 µg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91(phox) (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1 beta (IL-1ß) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91(phox), ACE and IL-1ß within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. CONCLUSION: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Hipertensão/fisiopatologia , Interleucina-1beta/análise , Núcleo Hipotalâmico Paraventricular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/análise , NADPH Oxidase 2 , NADPH Oxidases/análise , Peptidil Dipeptidase A/análise , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos , Marcadores de Spin
15.
Am J Hypertens ; 37(9): 682-691, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38782571

RESUMO

BACKGROUND: In the hypothalamic paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHRs), the expression of the testis-specific protein, Y-encoded-like 2 (TSPYL2) and the phosphorylation level of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) are higher comparing with the normotensive Wistar Kyoto rats (WKY). But how they are involved in hypertension remains unclear. TSPYL2 may interact with JAK2/STAT3 in PVN to sustain high blood pressure during hypertension. METHODS: Knockdown of TSPYL2 via adeno-associated virus (AAV) carrying shRNA was conducted through bilateral microinjection into the PVN of SHR and WKY rats. JAK2/STAT3 inhibition was achieved by intraperitoneally or PVN injection of AG490 into the SHRs. Blood pressure (BP), plasma norepinephrine (NE), PVN inflammatory response, and PVN oxidative stress were measured. RESULTS: TSPYL2 knock-down in the PVN of SHRs but not WKYs led to reduced BP and plasma NE, deactivation of JAK2/STAT3, decreased expression of pro-inflammatory cytokine IL-1ß, and increased expression of anti-inflammatory cytokine IL-10 in the PVN. Meanwhile, AG490 administrated in both ways reduced the BP in the SHRs and deactivated JAK2/STAT3 but failed to change the expression of TSPYL2 in PVN. AG490 also downregulated expression of IL-1ß and upregulated expression of IL-10. Both knockdown of TSPYL2 and inhibition of JAK2/STAT3 can reduce the oxidative stress in the PVN of SHRs. CONCLUSION: JAK2/STAT3 is regulated by TSPYL2 in the PVN of SHRs, and PVN TSPYL2/JAK2/STAT3 is essential for maintaining high BP in hypertensive rats, making it a potential therapeutic target for hypertension.


Assuntos
Pressão Sanguínea , Hipertensão , Janus Quinase 2 , Núcleo Hipotalâmico Paraventricular , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Masculino , Ratos , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Janus Quinase 2/metabolismo , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Fosforilação , Fator de Transcrição STAT3/metabolismo , Tirfostinas/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
16.
Front Neurosci ; 18: 1416522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872941

RESUMO

Background: Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods: Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results: Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKß and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion: Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.

17.
Nutrients ; 16(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39203718

RESUMO

BACKGROUND: Puerarin is an isoflavone compound isolated from the roots of a leguminous plant, the wild kudzu. Various functional activities of this compound in multiple diseases have been reported. However, the effect and mechanism of puerarin in improving blood pressure remain non-elucidated. PURPOSE: The current study was designed to assess the preventive effects of puerarin on the onset and progression of hypertension and to verify the hypothesis that puerarin alleviates blood pressure by inhibiting the ROS/TLR4/NLRP3 inflammasome signaling pathway in the hypothalamic paraventricular nucleus (PVN) of salt-induced prehypertensive rats. METHODS: Male Dahl salt-sensitive rats were fed low NaCl salt (3% in drinking water) for the control (NS) group or 8% (HS) to induce prehypertension. Each batch was divided into two group and treated by bilateral PVN microinjection with either artificial cerebrospinal fluid or puerarin through a micro-osmotic pump for 6 weeks. The mean arterial pressure (MAP) was recorded, and samples were collected and analyzed. RESULTS: We concluded that puerarin significantly prevented the elevation of blood pressure and effectively alleviated the increase in heart rate caused by high salt. Norepinephrine (NE) in the plasma of salt-induced prehypertensive rats also decreased upon puerarin chronic infusion. Additionally, analysis of the PVN sample revealed that puerarin pretreatment decreased the positive cells and gene level of TLR4 (Toll-like receptor 4), NLRP3, Caspase-1 p10, NOX2, MyD88, NOX4, and proinflammatory cytokines in the PVN. Puerarin pretreatment also decreased NF-κBp65 activity, inhibited oxidative stress, and alleviated inflammatory responses in the PVN. CONCLUSION: We conclude that puerarin alleviated blood pressure via inhibition of the ROS/TLR4/NLRP3 inflammasome signaling pathway in the PVN, suggesting the therapeutic potential of puerarin in the prevention of hypertension.


Assuntos
Pressão Sanguínea , Inflamassomos , Isoflavonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Núcleo Hipotalâmico Paraventricular , Espécies Reativas de Oxigênio , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Masculino , Ratos , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Isoflavonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Pré-Hipertensão/tratamento farmacológico , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta , Receptor 4 Toll-Like/metabolismo
18.
Cardiovasc Toxicol ; 24(9): 904-917, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39008239

RESUMO

Hypertension is a globally prevalent disease, but the pathogenesis remains largely unclear. AMP-activated protein kinase (AMPK) is a nutrition-sensitive signal of cellular energy metabolism, which has a certain influence on the development of hypertension. Previously, we found a down-regulation of the phosphorylated (p-) form of AMPK, and the up-regulation of the angiotensin II type 1 receptor (AT1-R) and that of p-ERK1/2 in the hypothalamic paraventricular nucleus (PVN) of hypertensive rats. However, the exact mechanism underlying the relationship between AMPK and AT1-R in the PVN during hypertension remains unclear. Thus, we hypothesized that AMPK modulates AT1-R through the ERK1/2-NF-κB pathway in the PVN, thereby inhibiting sympathetic nerve activity and improving hypertension. To examine this hypothesis, we employed a renovascular hypertensive animal model developed via two-kidney, one-clip (2K1C) and sham-operated (SHAM). Artificial cerebrospinal fluid (aCSF), used as vehicle, or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR, an AMPK activator, 60 µg/day) was microinjected bilaterally in the PVN of these rats for 4 weeks. In 2K1C rats, there an increase in systolic blood pressure (SBP) and circulating norepinephrine (NE). Also, the hypertensive rats had lowered expression of p-AMPK and p-AMPK/AMPK, elevated expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R, increased NF-κB p65 activity in the PVN compared with the levels of these biomarkers in SHAM rats. Four weeks of bilateral PVN injection of AMPK activator AICAR, attenuated the NE level and SBP, increased the expression of p-AMPK and p-AMPK/AMPK, lessened the NF-κB p65 activity, decreased the expression of p-ERK1/2, p-ERK1/2/ERK1/2 and AT1-R in the PVN of 2K1C rats. Data from this study imply that the activation of AMPK within the PVN suppressed AT1-R expression through inhibiting the ERK1/2-NF-κB pathway, decreased the activity of the sympathetic nervous system, improved hypertension.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Ativação Enzimática , Hipertensão Renovascular , Proteína Quinase 3 Ativada por Mitógeno , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/enzimologia , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/tratamento farmacológico , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Receptor Tipo 1 de Angiotensina/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator de Transcrição RelA/metabolismo , Ribonucleotídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Anti-Hipertensivos/farmacologia , Ratos
19.
Eur J Pharmacol ; 974: 176373, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341079

RESUMO

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.


Assuntos
Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida , Hipertensão , Fator 2 Relacionado a NF-E2 , Núcleo Hipotalâmico Paraventricular , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Ribonucleotídeos , Transdução de Sinais , Animais , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Masculino , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Aminoimidazol Carboxamida/administração & dosagem , Ribonucleotídeos/farmacologia , Ribonucleotídeos/administração & dosagem , Proteínas Quinases Ativadas por AMP/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Citocinas/metabolismo
20.
Phytomedicine ; 118: 154951, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453193

RESUMO

BACKGROUND: Hypertension has seriously affected a large part of the adult and elderly population. The complications caused by hypertension are important risk factors for cardiovascular disease accidents. Capsaicin, a pungent component of chili pepper has been revealed to improve hypertension. However, its potential mechanism in improving hypertension remains to be explored. PURPOSE: In the present study, we aimed to investigate whether capsaicin could attenuate the SIRT1/NF-κB/MAPKs pathway in the paraventricular nucleus of hypothalamus (PVN). METHODS: We used spontaneous hypertensive rats (SHRs) as animal model rats. Micro osmotic pump was used to give capsaicin through PVN for 28 days, starting from age12-week-old. RESULTS: The results showed that capsaicin significantly reduced blood pressure from the 16th day of infusion onward. At the end of the experimental period, we measured cardiac hypertrophy index and the heart rate (HR), and the results showed that the cardiac hypertrophy and heart rate of rats was significantly improved upon capsaicin chronic infusion. Norepinephrine (NE) and epinephrine (EPI) in plasma of SHRs treated with capsaicin were also decreased. Additionally, capsaicin increased the protein expression and number of positive cells of SIRT1 and the 67-kDa isoform of glutamate decarboxylase (GAD67), decreased the production of reactive oxygen species (ROS), number of positive cells of NOX2, those of Angiotensin Converting Enzyme (ACE) and p-IKKß, tyrosine hydroxylase (TH), the gene expression levels of NOX4 and pro-inflammatory cytokines. Capsaicin also decreased the relative protein expressions of protein in MAPKs pathway. CONCLUSION: Current data indicated that capsaicin within the PVN improves hypertension and cardiac hypertrophy via SIRT1/NF-κB/MAPKs pathway in the PVN of SHRs, supporting its potential as candidate drug for preventing and improving hypertension.


Assuntos
Hipertensão , NF-kappa B , Idoso , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Núcleo Hipotalâmico Paraventricular , Capsaicina/farmacologia , Sirtuína 1/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA