Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(22): e2308568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126907

RESUMO

In this work, cyano contained g-C3N4 comodified by In2S3 and polypyrrole (C≡N─CN/IS/Ppy) materials are synthesized for the photocatalytic production of H2O2 and photocatalysis-self-Fenton reaction for highly efficient degradation of metronidazole. The results from UV-vis spectrophotometry, surface photovoltage, and Kelvin probe measurements reveal the promoted transport and separation efficiency of photoinduced charges after the introduction of In2S3 and Ppy in the heterojunction. The existence of a built-in electric field accelerates the photoinduced charge separation and preserves the stronger oxidation ability of holes at the valence band of C≡N─CN. Linear sweep voltammetry measurements, zeta potential analyzations, nitroblue tetrazolium determination, and other measurements show that Ppy improves the conversion ratio of •O2 - to H2O2 and the utilization ratio of •O2 -, as well as suppresses decomposition of H2O2. Accordingly, the H2O2 evolution rate produced via a two-step single-electron reduction reaction reaches almost 895 µmol L-1 h-1, a value 80% and 7.2-fold higher than those obtained with C≡N─CN/IS and C≡N─CN, respectively. The metronidazole removal rate obtained via photocatalysis-self-Fenton reaction attains 83.7% within 120 minutes, a value much higher than that recorded by the traditional Fenton method. Overall, the proposed synthesis materials and route look promising for the H2O2 production and organic pollutants degradation.

2.
J Virol ; 97(1): e0157722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598202

RESUMO

Duck plague virus (DPV) is a high-morbidity fowl alphaherpesvirus that causes septicemic lesions in various organs. Most DPV genes are conserved among herpesviruses, while a few are specific to fowl herpesviruses, including the LORF3 gene, for which there is currently no literature describing its biological properties and functions. This study first addressed whether the LORF3 protein is expressed by making specific polyclonal antibodies. We could demonstrate that DPV LORF3 is an early gene and encodes a protein involved in virion assembly, mainly localized in the nucleus of DPV-infected DEF cells. To investigate the role of this novel LORF3 protein in DPV pathogenesis, we generated a recombinant virus that lacks expression of the LORF3 protein. Our data revealed that the LORF3 protein is not essential for viral replication but contributes to DPV replication in vitro and in vivo and promotes duck plague disease morbidity and mortality. Interestingly, deletion of the LORF3 protein abolished thymus atrophy in DPV-vaccinated ducks. In conclusion, this study revealed the expression of avian herpesviruses-specific genes and unraveled the role of the early protein LORF3 in the pathogenesis of DPV. IMPORTANCE DPV is a highly lethal alphaherpesvirus that causes duck plague in birds of the order Anseriformes. The virus has caused huge economic losses to the poultry industry due to high morbidity and mortality and the cost of vaccination. DPV encodes 78 open reading frames (ORFs), and these genes are involved in various processes of the viral life cycle. Functional characterization of DPV genes is important for understanding the complex viral life cycle and DPV pathogenesis. Here, we identified a novel protein encoded by LORF3, and our data suggest that the LORF3 protein is involved in the occurrence and development of duck plague.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Animais , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Patos , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Células Cultivadas
3.
Appl Environ Microbiol ; 90(1): e0135023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38084999

RESUMO

Manganese (Mn) is an essential element for bacteria, but the overload of manganese is toxic. In a previous study, we showed that the cation diffusion facilitator protein MetA and the resistance-nodulation-division efflux pump MetB are responsible for Mn efflux in the bacterial pathogen Riemerella anatipestifer CH-1. However, whether this bacterium encodes additional manganese efflux proteins is unclear. In this study, we show that R. anatipestifer CH-1 encodes a tellurium resistance C (TerC) family protein with low similarity to other characterized TerC family proteins. Compared to the wild type (WT), the terC mutant of R. anatipestifer CH-1 (∆terC) is sensitive to Mn(II) intoxication. The ability of TerC to export manganese is higher than that of MetB but lower than that of MetA. Consistently, terC deletion (∆terC) led to intracellular accumulation of Mn2+ under excess manganese conditions. Further study showed that ∆terC was more sensitive than the WT to the oxidant hypoclorite but not to hydrogen peroxide. Mutagenesis studies showed that the mutant at amino acid sites of Glu116 (E116), Asp122 (D122), Glu245 (E245) Asp248 (D248), and Asp254 (D254) may be involved in the ability of TerC to export manganese. The transcription of terC was upregulated under excess manganese and downregulated under iron-limited conditions. However, this was not dependent on the manganese metabolism regulator MetR. In contrast to a strain lacking the manganese efflux pump MetA or MetB, the terC mutant is attenuated in virulence in a duckling model of infection due to increased sensitivity to duck serum. Finally, comparative analysis showed that homologs of TerC are distributed across the bacterial kingdom, suggesting that TerC exerts a conserved manganese efflux function.IMPORTANCERiemerella anatipestifer is a notorious bacterial pathogen of ducks and other birds. In R. anatipestifer, the genes involved in manganese efflux have not been completely identified, although MetA and MetB have been identified as two manganese exporters. Additionally, the function of TerC family proteins in manganese efflux is controversial. Here, we demonstrated that a TerC family protein helps prevent Mn(II) intoxication in R. anatipestifer and that the ability of TerC to export manganese is intermediate compared to that of MetA and MetB. Sequence analysis and mutagenesis studies showed that the conserved key amino sites of TerC are Glu116, Asp122, Glu245, Asp248, and Asp254. The transcription of terC was regulated by manganese excess and iron limitation. Finally, we show that TerC plays a role in the virulence of R. anatipestifer due to the increased sensitivity to duck serum, rather than the increased sensitivity to manganese. Taken together, these results expand our understanding of manganese efflux and the pathogenic mechanisms of R. anatipestifer.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Proteínas de Bactérias/genética , Manganês/metabolismo , Telúrio/metabolismo , Riemerella/genética , Patos/microbiologia , Ferro/metabolismo , Doenças das Aves Domésticas/microbiologia , Infecções por Flavobacteriaceae/microbiologia
4.
Vet Res ; 55(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172999

RESUMO

During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRT‒PCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRT‒PCR will greatly facilitate more in-depth research.


Assuntos
Patos , Herpesviridae , Animais , Patos/genética , DNA Viral/química , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Herpesviridae/genética , Genoma Viral
5.
Endocr Pract ; 30(3): 231-238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38086525

RESUMO

OBJECTIVE: The main purpose of this study was to explore the diagnostic performance of the Ca∗Cl/P ratio for primary hyperparathyroidism (PHPT), especially normocalcaemic PHPT (NPHPT), to assist health care providers in making reliable and rapid clinical identifications. METHODS: From January 1, 2013, to March 31, 2023, 230 PHPT patients, including 65 with NPHPT and 230 sex- and age-matched controls, were enrolled in this retrospective study. Differences between hypercalcaemic PHPT (HPHPT) and NPHPT and between them and their respective controls were analyzed. The diagnostic accuracy of the Ca∗Cl/P ratio, Ca/P ratio, Cl/P ratio and albumin-corrected calcium was assessed by the area under the receiver operating characteristic curve. RESULTS: Compared with corresponding controls, NPHPT and HPHPT patients both had significantly higher Ca ∗ Cl/P ratios (271.64 ± 51.74 vs 192.71 ± 26; 419.91 ± 139.11 vs 199.14 ± 36.75, P < .001). In the overall cohort, the ROC-AUC of the Ca∗Cl/P ratio (0.964, 95% CI = 0.943-0.979) for diagnosis of PHPT patients was superior to albumin-corrected calcium (0.959, 95% CI = 0.934-0.973), the Ca/P ratio (0.956, 95% CI = 0.934-0.973), and the Cl/P ratio (0.923, 95% CI = 0.895-0.946). A Ca ∗ Cl/P ratio above 239.17 mmol/L, with sensitivity (0.952), specificity (0.922), PPV (0.924), NPV (0.951) and accuracy (0.937), can distinguish PHPT patients from healthy individuals. Furthermore, the Ca ∗ Cl/P ratio yielded a sensitivity of 0.831, specificity of 0.938, PPV of 0.931, NPV of 0.847 and accuracy of 0.885 for NPHPT. CONCLUSION: The Ca∗Cl/P ratio provides excellent diagnostic power for diagnosis of PHPT, especially NPHPT.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Humanos , Cálcio , Hiperparatireoidismo Primário/diagnóstico , Estudos Retrospectivos , Albuminas , Hormônio Paratireóideo
6.
J Assist Reprod Genet ; 41(5): 1403-1416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536597

RESUMO

PURPOSE: Preeclampsia (PE) is a vascular remodeling disorder cloesly linked to trophoblast dysfunction, involving defects in their proliferation, migration, and apoptosis. Maternal exosomal microRNAs (miRNAs) have been reported to play pivotal roles in the development of PE. However, the mechanism underlying the role of maternal exosomes in trophoblast dysfunction regarding the development of PE is poorly understood. METHODS: Plasma exosomes from maternal peripheral blood were collected from pregnant women with PE and from those with normal pregnancy. Bioinformatics analysis was used to identify significantly differentially expressed miRNAs under these two conditions. The expression of the miR-3198 gene in plasma exosomes was detected using quantitative real-time polymerase chain reaction. Dual luciferase reporter assay was used to confirm binding of miR-3198 and 3'UTR region of WNT3. Cell proliferation was examined using the Cell Count Kit-8 and EdU assays, and flow cytometry was performed to detect apoptosis and cell cycle. Changes in cell migration were examined using transwell and scratch assays. RESULTS: Patients with PE showed decreased expression of plasma-derived exosomal miR-3198. The proliferation and migration abilities of HTR-8/SVneo and primary human trophoblast cells were both improved when cocultured with miR-3198-rich exosomes. Exposure to miR-3198-enriched exosomes facilitated cell cycle progression but reduced apoptosis in HTR-8/SVneo cells. Notably, overexpression of miR-3198 partially prevented the inhibitory effects of WNT3 on proliferation and migration in HTR-8/SVneo cells. CONCLUSION: Exosomal miR-3198 in the maternal peripheral blood may regulate the biological functions of trophoblasts by targeting WNT3 and influence the development of diseases of placental origin.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Exossomos , MicroRNAs , Pré-Eclâmpsia , Trofoblastos , Humanos , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Feminino , Exossomos/genética , Exossomos/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , MicroRNAs/genética , Gravidez , Movimento Celular/genética , Proliferação de Células/genética , Adulto , Apoptose/genética , Proteína Wnt3/genética , Proteína Wnt3/metabolismo
7.
J Biol Chem ; 298(12): 102699, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379254

RESUMO

Unlike most flaviviruses transmitted by arthropods, Tembusu virus (TMUV) is still active during winter and causes outbreaks in some areas, indicating vector-independent spread of the virus. Gastrointestinal transmission might be one of the possible routes of vector-free transmission, which also means that the virus has to interact with more intestinal bacteria. Here, we found evidence that TMUV indeed can transmit through the digestive tract. Interestingly, using an established TMUV disease model by oral gavage combined with an antibiotic treatment, we revealed that a decrease in intestinal bacteria significantly reduced local TMUV proliferation in the intestine, revealing that the bacterial microbiome is important in TMUV infection. We found that lipopolysaccharide (LPS) present in the outer membrane of Gram-negative bacteria enhanced TMUV proliferation by promoting its attachment. Toll-like receptor 4 (TLR4), a cell surface receptor, can transmit signal from LPS. We confirmed colocalization of TLR4 with TMUV envelope (E) protein as well as their interaction in infected cells. Coherently, TMUV infection of susceptible cells was inhibited by an anti-TLR4 antibody, purified soluble TLR4 protein, and knockdown of TLR4 expression. LPS-enhanced TMUV proliferation could also be blocked by a TLR4 inhibitor. Meanwhile, pretreatment of duck primary cells with TMUV significantly impaired LPS-induced interleukin 6 production. Collectively, our study provides first insights into vector-free transmission mechanisms of flaviviruses.


Assuntos
Infecções por Flavivirus , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Receptor 4 Toll-Like , Infecções por Flavivirus/microbiologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Patos , Animais , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Replicação Viral , Técnicas de Silenciamento de Genes , Proteínas de Bactérias/metabolismo
8.
J Virol ; 96(18): e0093022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069544

RESUMO

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that mainly causes a decrease in egg production in infected waterfowl. Similar to other members of the Flaviviridae family, it can proliferate in most mammalian cells and may also pose a potential threat to nonavian animals. In previous studies, we found that DTMUV infection can upregulate suppressor of cytokine signaling 1 (SOCS1) to inhibit type I interferon (IFN) production and promote virus replication, but the specific mechanism is unclear. Furthermore, little is known about the regulatory role of ubiquitination during flavivirus infection. In this study, we found that activation of Toll-like receptor 3 (TLR3) signaling rather than type I IFN stimulation led to the upregulation of SOCS1 during DTMUV infection. Further studies revealed that JOSD1 stabilized SOCS1 expression by binding to the SH2 domain of SOCS1 and mediating its deubiquitination. In addition, JOSD1 also inhibited type I IFN production through SOCS1. Finally, SOCS1 acts as an E3 ubiquitin ligase that binds to IFN regulatory factor 7 (IRF7) through its SH2 domain and mediates K48-linked ubiquitination and proteasomal degradation of IRF7, ultimately inhibiting type I IFN production mediated by IRF7 and promoting viral proliferation. These results will enrich and deepen our understanding of the mechanism by which DTMUV antagonizes the host interferon system. IMPORTANCE DTMUV is a newly discovered flavivirus that seriously harms the poultry industry. In recent years, there have been numerous studies on the involvement of ubiquitination in the regulation of innate immunity. However, little is known about the involvement of ubiquitination in the regulation of flavivirus-induced type I IFN signaling. In this study, we found that SOCS1 was induced by TLR3 signaling during DTMUV infection. Furthermore, we found for the first time that duck SOCS1 protein was also modified by K48-linked polyubiquitination, whereas our previous study found that SOCS1 was upregulated during DTMUV infection. Further studies showed that JOSD1 stabilized SOCS1 expression by mediating the deubiquitination of SOCS1. While SOCS1 acts as a negative regulator of cytokines, we found that DTMUV utilized SOCS1 to mediate the ubiquitination and proteasomal degradation of IRF7 and ultimately inhibit type I IFN production, thereby promoting its proliferation.


Assuntos
Infecções por Flavivirus , Flavivirus , Interações entre Hospedeiro e Microrganismos , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Endopeptidases/genética , Endopeptidases/metabolismo , Retroalimentação Fisiológica , Flavivirus/metabolismo , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima
9.
Appl Environ Microbiol ; 89(12): e0130823, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38038982

RESUMO

IMPORTANCE: Riemerella anatipestifer (RA) is a notorious duck pathogen, characterized by a multitude of serotypes that exhibit no cross-reaction with one another. Moreover, RA is resistant to various antibacterial agents. Consequently, understanding the mechanisms behind resistance and identifying potential targets for drug development have become pressing needs. In this study, we show that the two TolC proteins play a role in the resistance to different drugs and metals and in the virulence. The results suggest that TolCA has a wider range of efflux substrates than TolCB. Except for gentamicin, neither TolCA nor TolCB was involved in the efflux of the other tested antibiotics. Strikingly, TolCA but not TolCB enhanced the frequency of resistance-conferring mutations. Moreover, TolCA was involved in RA virulence. Given its conservation in RA, TolCA has potential as a drug target for the development of therapeutics against RA infections.


Assuntos
Infecções por Flavobacteriaceae , Doenças das Aves Domésticas , Riemerella , Animais , Virulência/genética , Riemerella/metabolismo , Patos/microbiologia , Fatores de Virulência/genética , Metais/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Vet Res ; 54(1): 47, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308988

RESUMO

Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.


Assuntos
Patos , Imunidade Inata , Animais , Vacinas Atenuadas , Metiltransferases
11.
Vet Res ; 54(1): 5, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703166

RESUMO

Duck hepatitis A virus type 1 (DHAV-1) is an acute, highly lethal infectious agent that infects ducklings and causes up to 95% mortality in ducklings up to 1 week of age, posing a significant economic threat to the duck farming industry. Previous studies have found that the proteolytic enzyme 3 C encoded by DHAV-1 can inhibit the IRF7 protein from blocking the upstream signaling pathway of the type I interferon to promote viral replication. However, there are still few studies on the mechanism of DHAV-1 in immune evasion. Here, we demonstrate that the DHAV-1 3CD protein can interact with IRF7 protein and reduce IRF7 protein expression without directly affecting IRF7 protein nuclear translocation. Further studies showed that the 3CD protein could reduce the expression of RIG-I protein without affecting its transcription level. Furthermore, we found that the 3CD protein interacted with the N-terminal structural domain of RIG-I protein, interfered with the interaction between RIG-I and MAVS, and degraded RIG-I protein through the proteasomal degradation pathway, thereby inhibiting its mediated antiviral innate immunity to promote DHAV-1 replication. These data suggest a novel immune evasion mechanism of DHAV-1 mediated by the 3CD protein, and the results of this experiment are expected to improve the understanding of the biological functions of the viral precursor protein and provide scientific data to elucidate the mechanism of DHAV-1 infection and pathogenesis.


Assuntos
Vírus da Hepatite do Pato , Interferon Tipo I , Animais , Imunidade Inata , Transdução de Sinais , Proteínas Virais , Patos
12.
Future Oncol ; 19(30): 2055-2073, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37823367

RESUMO

Androgen deprivation therapy is a common treatment method for metastatic prostate cancer through lowering androgen levels; however, this therapy frequently leads to the development of castration-resistant prostate cancer (CRPC). This is attributed to the activation of the androgen receptor (AR) signaling pathway. Current treatments targeting AR are often ineffective mostly due to AR gene overexpression and mutations, as well as the presence of splice variants that accelerate CRPC progression. Thus there is a critical need for more specific medication to treat CRPC. Small interfering RNAs have shown great potential as a targeted therapy. This review discusses prostate cancer progression and the role of AR signaling in CRPC, and proposes siRNA-based targeted therapy as a promising strategy for CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/terapia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Antagonistas de Androgênios/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Transdução de Sinais
13.
Environ Res ; 229: 115863, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031720

RESUMO

With unique porous structure inherited from lignocellulose, biochar was an appropriate carrier for small-size MgO materials, which could simplify the synthetic process and better solve agglomeration and separation problems during adsorption. Biochar-supported MgO was prepared with impregnation method. Under different synthesis conditions, the obtained MgO presented diverse properties, and moderate pyrolysis condition was conducive to the improvement of Mg conversion rate. The Pb(II) capacity was highly correlated with Mg content, rather than the specific surface area. Reducing the pyrolysis temperature or increasing the usage of supporter could improve adsorption efficiency when using Mg content-normalized capacity as the criterion. The better release ability of Mg, contribute by the higher extent of hydration and better spread of MgO, were the critical factors. The maximal Mg content-normalized capacity could reach 0.932 mmol·mmol-Mg-1 with the mass ratio of biochar/MgCl2·6H2O = 4:1 at the pyrolysis temperature of 600 °C. Considering the ultimate utilization efficiency of Mg in precursor, the optimum Mg consumption-normalized capacity was 0.744 mmol·mmol-Mg-1 with the mass ratio of biochar/MgCl2·6H2O = 1:1 at 600 °C.


Assuntos
Óxido de Magnésio , Magnésio , Óxido de Magnésio/química , Chumbo , Carvão Vegetal/química , Adsorção , Cinética
14.
Virol J ; 19(1): 111, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761382

RESUMO

BACKGROUND: Duck hepatitis A virus type 1 (DHAV-1) is one of the most serious pathogens endangering the duck industry. However, there are few studies on the regulation of the cell cycle by DHAV-1. METHODS: In this study, flow cytometry was applied to analyze the effect of DHAV-1 infection on the cell cycle of duck embryo fibroblasts (DEFs). Subsequently, we analyzed the effects of cell cycle phases on DHAV-1 replication by real-time reverse transcriptase quantitative PCR (real-time RT-qPCR). RESULTS: Flow cytometry data analysis found that DEFs in the S phase increased by 25.85% and 54.21% at 24 h and 48 h after DHAV-1 infection, respectively. The levels of viral RNA detected by real-time RT-qPCR were higher in the DEFs with synchronization in the S phase or G0/G1 phase than in the control group. However, there was no difference in viral copy number between the G2/M phase arrest and control groups. In addition, non-structural protein 3D of DHAV-1 significantly increased cells in the S phase, indicating that 3D protein is one of the reasons for the cell cycle arrest in the S phase. CONCLUSIONS: In summary, DHAV-1 infection induces the cell cycle arrest of DEFs in the S phase. Both S phase and G0/G1 phase synchronization facilitate the replication of DHAV-1, and 3D protein is one of the reasons for the S phase arrest.


Assuntos
Vírus da Hepatite do Pato , Hepatite Viral Animal , Animais , Pontos de Checagem do Ciclo Celular , Patos , Vírus da Hepatite do Pato/genética , Fase S
15.
Anticancer Drugs ; 33(10): 989-998, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206129

RESUMO

Oovarian cancer is a common lethal gynecological malignancy with a high occurrence and dismal prognosis on account of its drug resistance. MicroRNAs (miRNAs) are widely involved in the chemotherapy resistance of tumors, including miR-30a-5p. Herein, we probed the functional role and molecular mechanism of miR-30a-5p in the chemoresistance of ovarian cancer. We enrolled 48 ovarian cancer patients in this study. Statistical analysis and a series of experiments including quantitative reverse transcription polymerase chain reaction, western blot, methyl thiazolyl tetrazolium assay, colony formation assay, flow cytometry analysis, Transwell assay, luciferase reporter assay, RNA pull-down assay and TOP/FOP flash assay were explored in the study. Animal experiments were performed to verify the role of miR-30a-5p in vivo . In our study, miR-30a-5p showed a prominently low level in ovarian cancer tissues and cells. Importantly, its expression in cisplatin-resistant cell lines was more downregulated than in cisplatin-sensitive ones. Additionally, miR-30a-5p overexpression inhibited proliferative, migratory and invasive abilities of ovarian cancer cells while enhancing cell apoptosis and improving cell sensitivity to cisplatin in ovarian cancer. Further, miR-30a-5p targeted to chromodomain helicase DNA binding protein 1 (CHD1) and inhibited the expression of CHD1 in ovarian cancer. Moreover, rescue experiments manifested that miR-30a-5p weakened cisplatin resistance and the cellular process of ovarian cancer by mediating CHD1. Besides, miR-30a-5p regulated CHD1 expression to suppress Wnt/ß-catenin signaling in ovarian cancer. The findings were verified by in vivo experiments. This article elucidated that miR-30a-5p/CHD1 axis inhibited the cellular process and enhanced cisplatin sensitivity of ovarian cancer cells through the Wnt/ß-catenin pathway, which may provide a useful direction for the targeted chemotherapy of ovarian cancer.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , MicroRNAs , Neoplasias Ovarianas , Animais , Feminino , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Via de Sinalização Wnt
16.
Vet Res ; 53(1): 22, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303942

RESUMO

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown. In this study, we first found that the DPV UL41 protein inhibited duck interferon-ß (IFN-ß) production mediated by RIG-I and melanoma differentiation-associated gene 5 (MDA5) by broadly downregulating the mRNA levels of important adaptor molecules, such as RIG-I, MDA5, mitochondrial antiviral signalling protein (MAVS), stimulator of interferon gene (STING), TANK-binding kinase 1 (TBK1), and interferon regulatory factor (IRF) 7. The conserved sites of the UL41 protein, E229, D231, and D232, were responsible for this activity. Furthermore, the DPV CHv-BAC-ΔUL41 mutant virus induced more duck IFN-ß and IFN-stimulated genes (Mx, OASL) production in duck embryo fibroblasts (DEFs) than DPV CHv-BAC parent virus. Our findings provide insights into the molecular mechanism underlying DPV immune evasion.


Assuntos
Patos , Interferon beta , Animais , Imunidade Inata , Interferon beta/genética , Interferons , Estabilidade de RNA
17.
Vet Res ; 53(1): 93, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397147

RESUMO

An alphaherpesvirus carries dozens of viral proteins in the envelope, tegument and capsid structure, and each protein plays an indispensable role in virus adsorption, invasion, uncoating and release. After infecting the host, a virus eliminates unfavourable factors via multiple mechanisms to escape or suppress the attack of the host immune system. Post-translational modification of proteins, especially phosphorylation, regulates changes in protein conformation and biological activity through a series of complex mechanisms. Many viruses have evolved mechanisms to leverage host phosphorylation systems to regulate viral protein activity and establish a suitable cellular environment for efficient viral replication and virulence. In this paper, viral protein kinases and the regulation of viral protein function mediated via the phosphorylation of alphaherpesvirus proteins are described. In addition, this paper provides new ideas for further research into the role played by the post-translational modification of viral proteins in the virus life cycle, which will be helpful for understanding the mechanisms of viral infection of a host and may lead to new directions of antiviral treatment.


Assuntos
Alphaherpesvirinae , Animais , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Replicação Viral
18.
Vet Res ; 53(1): 64, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978392

RESUMO

Duck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens responsible for death in ducklings. Autophagy is a catabolic process that maintains cellular homeostasis, and the PI3KC3 protein plays an important role in the initiation of autophagy. DHAV-1 infection induces autophagy in duck embryo fibroblasts (DEFs) but the molecular mechanism between it and autophagy has not been reported. First, we determined that DHAV-1 infection induces autophagy in DEFs and that autophagy induction is dependent on the integrity of viral proteins by infecting DEFs with UV-inactivated or heat-inactivated DHAV-1. Then, in experiments using the pharmacological autophagy inducer rapamycin and the autophagy inhibitor chloroquine, autophagy inhibition was shown to reduce intracellular and extracellular DHAV-1 genome copies and viral titres. These results suggest that autophagy activated by DHAV-1 infection in DEFs affects DHAV-1 proliferation and extracellular release. Next, we screened the autophagy-inducing effects of the DHAV-1 structural proteins VP0, VP3, and VP1 and found that all DHAV-1 structural proteins could induce autophagy in DEFs but not the full autophagic flux. Finally, we found that VP1 promotes protein expression of PI3KC3 and Beclin1 by western blot experiments and that VP1 interacts with PI3KC3 by co-immunoprecipitation experiments; moreover, 3-MA-induced knockdown of PI3KC3 inhibited VP1 protein-induced autophagy in DEFs. In conclusion, the DHAV-1 structural protein VP1 regulates the PI3KC3 complex by interacting with PI3KC3 to induce autophagy in DEFs.


Assuntos
Vírus da Hepatite do Pato , Hepatite Viral Animal , Infecções por Picornaviridae , Doenças das Aves Domésticas , Animais , Autofagia , Proteína Beclina-1 , Patos , Vírus da Hepatite do Pato/fisiologia , Infecções por Picornaviridae/veterinária
19.
Inorg Chem ; 61(1): 605-612, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919395

RESUMO

Carbide clusterfullerenes (CCFs) have been of great concern due to their potential applications in materials science, in which the internal carbide cluster plays vital roles in the stability and properties of CCF. However, there still remains a debate about what configuration is ideal for the internal carbide cluster. In this work, we isolated two isomers (I and II) of Ho2C94 and studied them by means of mass spectrometry, UV-vis-NIR spectroscopy, and cyclic/differential pulse voltammetry. A combined study of single-crystal X-ray diffraction (SC-XRD) and density functional theory (DFT) computation ascertains isomer-I as Ho2C2@C2(61)-C92, in which the Ho2C2 cluster displays variable configurations from planar zigzag to folded butterfly with very small distortion energy (∼10 kJ/mol). This study hence confirms that the internal carbide cluster is intrinsically flexible over a broad geometrical range in a relatively large fullerene cage, where the nanoscale compression effect is almost negligible.

20.
World J Surg Oncol ; 20(1): 227, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804390

RESUMO

BACKGROUND: With low response to present immunotherapy, it is imperative to identify new immune-related biomarkers for more effective immunotherapies for oral cancer. METHODS: RNA profiles for 390 oral cancer patients and 32 normal samples were downloaded from The Cancer Genome Atlas (TCGA) database and differentially expressed genes (DEGs) were analyzed. Immune genesets from ImmPort repository were overlapped with DEGs. After implementing univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, key immune-related gene pairs (IRGPs) among the overlapped DEGs for predicting the survival risk were obtained. Then, the cutoff of risk score was calculated by the receiver operating characteristic (ROC) curve to stratify oral cancer patients into high and low-risk groups. Multivariate Cox analysis was used to analyze independent prognostic indicators for oral cancer. Besides, infiltration of immune cells, functional annotation, and mutation analysis of IRGPs were conducted. Biological functions correlated with IRGPs were enriched by Gene Set Enrichment Analysis (GSEA) method. RESULTS: We identified 698 differentially expressed genes (DEGs) in response to oral cancer. 17 IRGPs among the DEGs were identified and integrated into a risk score model. Patients in the high-risk group have a significantly worse prognosis than those in the low-risk group in both training (P<0.001) and test (P=0.019) cohorts. Meanwhile, the IRGP model was identified as an independent prognostic factor for oral cancer. Different infiltration patterns of immune cells were found between the high- and low-risk groups that more types of T and B cells were enriched in the low-risk group. More immune-related signaling pathways were highly enriched in the low-risk group and Tenascin C (TNC) was the most frequently mutated gene. We have developed a novel 17-IRGPs signature for risk stratification and prognostic prediction of oral cancer. CONCLUSION: Our study provides a foundation for improved immunotherapy and prognosis and is beneficial to the individualized management of oral cancer patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias Bucais/genética , Prognóstico , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA