Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6689, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095290

RESUMO

Regenerated silk fibroin (RSF) and regenerated sericin (RSS) have attracted much attention for tissue engineering due to excellent biocompatibility and controllable degradation. However, pure RSF films prepared by existing methods are brittle, which limits applications in the field of high-strength and/or flexible tissues (e.g. cornea, periosteum and dura). A series of RSF/RSS composite films were developed from solutions prepared by dissolving silks with different degumming rates. The molecular conformation, crystalline structure and tensile properties of the films and the effect of sericin content on the structure and properties were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction results revealed more ß-sheets in films prepared by boiling water degumming than in Na2CO3-degummed RSFC film. Analysis of mechanical properties showed that the breaking strength (3.56 MPa) and elongation (50.51%) of boiling water-degummed RSF/RSS film were significantly increased compared with RSFC film (2.60 MPa and 32.31%), and the flexibility of films could be further improved by appropriately reducing the degumming rate.

2.
Polymers (Basel) ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145899

RESUMO

The success of a small-caliber artificial vascular graft in the host in order to obtain functional tissue regeneration and remodeling remains a great challenge in clinical application. In our previous work, a silk-based, small-caliber tubular scaffold (SFTS) showed excellent mechanical properties, long-term patency and rapid endothelialization capabilities. On this basis, the aim of the present study was to evaluate the vascular reconstruction process after implantation to replace the common carotid artery in rabbits. The new tissue on both sides of the SFTSs at 1 month was clearly observed. Inside the SFTSs, the extracellular matrix (ECM) was deposited on the pore wall at 1 month and continued to increase during the follow-up period. The self-assembled collagen fibers and elastic fibers were clearly visible in a circumferential arrangement at 6 months and were similar to autologous blood vessels. The positive expression rate of Lysyl oxidase-1 (LOXL-1) was positively correlated with the formation and maturity of collagen fibers and elastic fibers. In summary, the findings of the tissue regeneration processes indicated that the bionic SFTSs induced in situ angiogenesis in defects.

3.
Polymers (Basel) ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746041

RESUMO

The periosteum plays an important role in bone formation and reconstruction. One of the reasons for the high failure rate of bone transplantation is the absence of the periosteum. Silk fibroin (SF) and silk sericin (SS) have excellent biocompatibility and physicochemical properties, which have amazing application prospects in bone tissue engineering, but lacked mechanical properties. We developed a series of SF/SS composite films with improved mechanical properties using boiling water degumming, which caused little damage to SF molecular chains to retain larger molecules. The Fourier transform infrared spectroscopy and X-ray diffraction results showed that there were more ß-sheets in SF/SS films than in Na2CO3 degummed SF film, resulting in significantly improved breaking strength and toughness of the composite films, which were increased by approximately 1.3 and 1.7 times, respectively. The mineralization results showed that the hydroxyapatite (HAp) deposition rate on SF/SS composite films was faster than that on SF film. The SF/SS composite films effectively regulated the nucleation, growth and aggregation of HAp-like minerals, and the presence of SS accelerated the early mineralization of SF-based materials. These composite films may be promising biomaterials in the repair and regeneration of periosteum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA