Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Physiol ; 191(2): 1153-1166, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36440478

RESUMO

Pearl of Csaba (PC) is a valuable backbone parent for early-ripening grapevine (Vitis vinifera) breeding, from which many excellent early ripening varieties have been bred. However, the genetic basis of the stable inheritance of its early ripening trait remains largely unknown. Here, the pedigree, consisting of 40 varieties derived from PC, was re-sequenced for an average depth of ∼30×. Combined with the resequencing data of 24 other late-ripening varieties, 5,795,881 high-quality single nucleotide polymorphisms (SNPs) were identified following a strict filtering pipeline. The population genetic analysis showed that these varieties could be distinguished clearly, and the pedigree was characterized by lower nucleotide diversity and stronger linkage disequilibrium than the non-pedigree varieties. The conserved haplotypes (CHs) transmitted in the pedigree were obtained via identity-by-descent analysis. Subsequently, the key genomic segments were identified based on the combination analysis of haplotypes, selective signatures, known ripening-related quantitative trait loci (QTLs), and transcriptomic data. The results demonstrated that varieties with a superior haplotype, H1, significantly (one-way ANOVA, P < 0.001) exhibited early grapevine berry development. Further analyses indicated that H1 encompassed VIT_16s0039g00720 encoding a folate/biopterin transporter protein (VvFBT) with a missense mutation. VvFBT was specifically and highly expressed during grapevine berry development, particularly at veraison. Exogenous folate treatment advanced the veraison of "Kyoho". This work uncovered core haplotypes and genomic segments related to the early ripening trait of PC and provided an important reference for the molecular breeding of early-ripening grapevine varieties.


Assuntos
Vitis , Vitis/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Transcriptoma , Frutas/metabolismo , Genômica
2.
Plant Cell Rep ; 43(4): 93, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467927

RESUMO

KEY MESSAGE: VyPUB21 plays a key role during the defense against powdery mildew in grapes. Ubiquitin-ligating enzyme (E3), a type of protein widely found in plants, plays a key role in their resistance to disease. Yet how E3 participates in the disease-resistant response of Chinese wild grapevine (Vitis yeshanensis) remains unclear. Here we isolated and identified a U-box type E3 ubiquitin ligase, VyPUB21, from V. yeshanensis. This gene's expression level rose rapidly after induction by exogenous salicylic acid (SA), jasmonic acid (JA), and ethylene (ETH) and powdery mildew. In vitro ubiquitination assay results revealed VyPUB21 could produce ubiquitination bands after co-incubation with ubiquitin, ubiquitin-activating enzyme (E1), and ubiquitin-conjugating enzyme (E2); further, mutation of the conserved amino acid site in the U-box can inhibit the ubiquitination. Transgenic VyPUB21 Arabidopsis had low susceptibility to powdery mildew, and significantly fewer conidiophores and spores on its leaves. Expression levels of disease resistance-related genes were also augmented in transgenic Arabidopsis, and its SA concentration also significantly increased. VyPUB21 interacts with VyNIMIN and targets VyNIMIN protein hydrolysis through the 26S proteasome system. Thus, the repressive effect of the NIMIN-NPR complex on the late systemic acquired resistance (SAR) gene was attenuated, resulting in enhanced resistance to powdery mildew. These results indicate that VyPUB21 encoding ubiquitin ligase U-box E3 activates the SA signaling pathway, and VyPUB21 promotes the expression of late SAR gene by degrading the important protein VyNIMIN of SA signaling pathway, thus enhancing grape resistance to powdery mildew.


Assuntos
Arabidopsis , Ascomicetos , Vitis , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ascomicetos/fisiologia , Ubiquitinas/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
3.
Funct Integr Genomics ; 23(3): 218, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393305

RESUMO

Cucurbits are a diverse plant family that includes economically important crops, such as cucumber, watermelon, melon, and pumpkin. Knowledge of the roles that long terminal repeat retrotransposons (LTR-RTs) have played in diversification of cucurbit species is limited; to add to understanding of the roles of LTR-RTs, we assessed their distributions in four cucurbit species. We identified 381, 578, 1086, and 623 intact LTR-RTs in cucumber (Cucumis sativus L. var. sativus cv. Chinese Long), watermelon (Citrullus lanatus subsp. vulgaris cv. 97103), melon (Cucumis melo cv. DHL92), and Cucurbita (Cucurbita moschata var. Rifu), respectively. Among these LTR-RTs, the Ale clade of the Copia superfamily was the most abundant in all the four cucurbit species. Insertion time and copy number analysis revealed that an LTR-RT burst occurred approximately 2 million years ago in cucumber, watermelon, melon, and Cucurbita, and may have contributed to their genome size variation. Phylogenetic and nucleotide polymorphism analyses suggested that most LTR-RTs were formed after species diversification. Analysis of gene insertions by LTR-RTs revealed that the most frequent insertions were of Ale and Tekay and that genes related to dietary fiber synthesis were the most commonly affected by LTR-RTs in Cucurbita. These results increase our understanding of LTR-RTs and their roles in genome evolution and trait characterization in cucurbits.


Assuntos
Cucurbita , Retroelementos , Produtos Agrícolas , Fenótipo , Filogenia , Retroelementos/genética , Cucurbita/genética
4.
Plant Cell Rep ; 43(1): 19, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150069

RESUMO

KEY MESSAGE: VviWOX13C plays a key regulatory role in the expansin during fruit set. Expansins as a type of non-enzymatic cell wall proteins, are responsible for the loosening and extension in cell walls leading to the enlargement of the plant cells. However, the current studies are still lacking in expansin genes associated with promoting fruit set. Here, 29 members of the expansin gene family were identified in the whole genome of grapes (Vitis vinifera L.), and the functional prediction of expansins was based on the gene annotated information. Results showed that the 29 members of grape expansin gene family could be mainly divided into four subfamilies (EXPA, EXPB, LIKE A, and LIKE B), distributed on 16 chromosomes. Replication analysis showed that there were four segmental duplications and two tandem duplications. Each expansins sequence contained two conserved domain features of grape EXPs (DPBB_1 and Expansin_C) through protein sequence analysis. The transcriptome sequencing results revealed that VviEXPA37, VviEXPA38, and VviEXPA39 were induced and upregulated by CPPU. Furthermore, transcriptional regulatory prediction network indicated that VviWOX13C targeted regulates VviEXPA37, VviEXPA38, and VviEXPA39 simultaneously. EMSA and dual luciferase assays demonstrated that VviWOX13C directly activated the expression of VviEXPA37, VviEXPA38, and VviEXPA39 by directly binding to its promoter. These results provide a basis for further studies on the function and regulatory mechanisms of expansin genes in fruit set.


Assuntos
Fatores de Transcrição , Vitis , Vitis/genética , Frutas/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes
5.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003578

RESUMO

Drought stress profoundly affects plant growth and development, posing a significant challenge that is extensively researched in the field. Thioredoxins (TRXs), small proteins central to redox processes, are crucial to managing both abiotic and biotic stresses. In this research, the VyTRXy gene, cloned from wild Yanshan grapes, was validated as a functional TRX through enzyme activity assays. VyTRXy was found to bolster photosynthesis, augment levels of osmotic regulators, stimulate antioxidant enzyme activities, and strengthen drought resilience in transgenic plants. These enhancements were evidenced by higher survival rates, optimized photosynthetic metrics, increased proline levels, augmented chlorophyll concentration, reduced electrolyte leakage, and decreased malondialdehyde and hydrogen peroxide (H2O2) levels. Furthermore, there was a surge in the activities of enzymes such as catalase, ascorbate peroxidase, glutathione peroxidase, dehydroascorbate reductase, and glutathione reductase, along with an increased expression of TRX peroxidase. Notably, under drought stress, there was a marked elevation in the expression of stress-responsive genes, including the adversity stress-inducible expression gene (NtRD29A) and DRE-binding protein (NtDREB), in transgenic tobacco. This investigation is pivotal in the quest for drought-resistant grapevine varieties and provides significant insights into the molecular functionality of VyTRXy in enhancing grapevine drought tolerance.


Assuntos
Antioxidantes , Resistência à Seca , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Genomics ; 113(6): 3793-3803, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534647

RESUMO

Fruit development is modified by different types of epigenetics. Histone methylation is an important way of epigenetic modification. Eight genes related to H3K4 methyltransferase, named VvH3K4s, were identified and isolated from the grape genome based on conserved domain analysis, which could be divided into 3 categories by the phylogenetic relationship. Transcriptome data showed that VvH3K4-5 was obviously up-regulated during fruit ripe, and its expression level was significantly different between 'Kyoho' and 'Fengzao'. The VvH3K4s promoters contains cis-acting elements of in response to stress, indicating that they may be involved in the metabolic pathways regulated by ROS signaling. The subcellular localization experiment and promoter activity analysis experiment on VvH3K4-5 showed that VvH3K4s may be regulated by H2O2. With H2O2 and Hypotaurine treatment, it was found that the expression pattern of most genes was opposite, and the expression level showed different expression trend with the extension of treatment time.


Assuntos
Vitis , Frutas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitis/genética
7.
Plant Cell Physiol ; 61(12): 2043-2054, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976591

RESUMO

The plant U-box E3 ubiquitin ligase-mediated ubiquitin/26S proteasome degradation system plays a key role in plant growth and development. Previously identified as a member of the grape PUB gene family, PUB38 was shown to participate in the berry-ripening progress. Here, we demonstrate that the E3 ligase VlPUB38 mediates abscisic acid (ABA) synthesis via 26S proteasome degradation and its involvement in regulating fruit-ripening processes. Strawberry-overexpressing VlPUB38 lines displayed obvious inhibition of mature phenotype, and this was rescued by exogenous ABA treatment and MG132. Post-ABA treatment, expression levels of ABA response-related genes in VlPUB38-overexpressed Arabidopsis significantly exceeded controls. Strawberry and Arabidopsis ectopic expression assays suggest that VlPUB38 negatively regulates fruit ripening in an ABA-dependent manner. Moreover, VlPUB38 has ubiquitin ligase activity, which depends on the U-box-conserved domain. VlPUB38 interacts with abscisic-aldehyde oxidase (VlAAO), targeting VlAAO proteolysis via the 26S proteasome system. These results indicate that VlPUB38 negatively regulates grape fruit ripening by mediating the degradation of key factor VlAAO in the ABA synthesis pathway.


Assuntos
Ácido Abscísico/metabolismo , Aldeído Oxidase/metabolismo , Fragaria/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis , Fragaria/metabolismo , Frutas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Vitis/enzimologia , Vitis/genética , Vitis/metabolismo
8.
BMC Plant Biol ; 21(1): 422, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535070

RESUMO

BACKGROUND: RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, which plays an important role in plant growth and development, and growth and responses to biotic and abiotic stresses. RESULTS: A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, and these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VvRCHCs family together. Structural analysis showed that most VvRCHCs (67.13 %) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VvRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were like the results of qRT-PCR analysis. In vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance. Moreover, the transgenic plant survival rate increased by 30 %, accompanied by electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. The quantitative expression of AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 showed that they participated in the response to drought stress may be regulated by the expression of VyRCHC114. CONCLUSIONS: This study provides valuable new information for the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress.


Assuntos
Secas , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética , Vitis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Desidratação , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Ubiquitina-Proteína Ligases/metabolismo
9.
BMC Genomics ; 21(1): 784, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176674

RESUMO

BACKGROUND: In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. RESULTS: In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. CONCLUSIONS: The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways.


Assuntos
Vitis , Clorofila A , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Transcriptoma , Vitis/genética
10.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659946

RESUMO

In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.


Assuntos
Produtos Agrícolas/genética , Plastídeos/genética , Transformação Genética/genética , Animais , Cloroplastos/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Genoma de Cloroplastos/genética , Humanos , Nanotubos de Carbono/química , Plantas Geneticamente Modificadas/genética , Transgenes/genética
11.
BMC Genomics ; 20(1): 880, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747891

RESUMO

BACKGROUND: Melatonin is a ubiquitous molecule and exists across kingdoms. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. A number of studies have been conducted on the melatonin content and exogenous melatonin treatment of grapevine (Vitis vinifera L.). However, key genes or enzymes of the melatonin biosynthetic pathway remain unclear. RESULTS: In this study, we cloned and identified the gene encoding serotonin N-acetyltransferase (SNAT) in grapevine (VvSNAT2). The VvSNAT2 protein was identified from a collection of 30 members of the grapevine GCN5-related N-acetyltransferase (GNAT) superfamily. Phylogenetic and protein sublocalization analyses showed that the candidate gene VvGNAT16 is VvSNAT2. Characterization of VvSNAT2 showed that its enzymatic activity is highest at a pH of 8.8 and a temperature of 45 °C. Analysis of enzyme kinetics showed the values of Km and Vmax of VvSNAT2 using serotonin were 392.5 µM and 836 pmol/min/mg protein, respectively. The expression of VvSNAT2 was induced by melatonin treatment and pathogen inoculation. Overexpression of VvSNAT2 in Arabidopsis resulted in greater accumulation of melatonin and chlorophyll and enhanced resistance to powdery mildew in the transgenic plants compared with the wild type (WT). Additionally, our data showed that the marker genes in the salicylic acid (SA) signaling pathway were expressed to higher levels in the transgenic plants compared with the WT. CONCLUSIONS: The VvSNAT2 gene was cloned and identified in grapevine for the first time. Our results indicate that VvSNAT2 overexpression activates the SA and JA signaling pathways; however, the SA pathway plays a central role in VvSNAT2-mediated plant defense.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Regulação da Expressão Gênica de Plantas , Melatonina/biossíntese , Doenças das Plantas/genética , Proteínas de Plantas/genética , Vitis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/imunologia , Arilalquilamina N-Acetiltransferase/imunologia , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Clorofila/biossíntese , Clonagem Molecular , Ciclopentanos/metabolismo , Expressão Gênica , Oxilipinas/metabolismo , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Ácido Salicílico/metabolismo , Serotonina/metabolismo , Transdução de Sinais , Vitis/classificação , Vitis/enzimologia , Vitis/imunologia
12.
BMC Genomics ; 20(1): 825, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703618

RESUMO

BACKGROUND: 5-Azacytidine (5-azaC) promotes the development of 'Kyoho' grape berry but the associated changes in gene expression have not been reported. In this study, we performed transcriptome analysis of grape berry at five developmental stages after 5-azaC treatment to elucidate the gene expression networks controlling berry ripening. RESULTS: The expression patterns of most genes across the time series were similar between the 5-azaC treatment and control groups. The number of differentially expressed genes (DEGs) at a given developmental stage ranged from 9 (A3_C3) to 690 (A5_C5). The results indicated that 5-azaC treatment had not very great influences on the expressions of most genes. Functional annotation of the DEGs revealed that they were mainly related to fruit softening, photosynthesis, protein phosphorylation, and heat stress. Eight modules showed high correlation with specific developmental stages and hub genes such as PEROXIDASE 4, CAFFEIC ACID 3-O-METHYLTRANSFERASE 1, and HISTONE-LYSINE N-METHYLTRANSFERASE EZA1 were identified by weighted gene correlation network analysis. CONCLUSIONS: 5-AzaC treatment alters the transcriptional profile of grape berry at different stages of development, which may involve changes in DNA methylation.


Assuntos
Azacitidina/farmacologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Perfilação da Expressão Gênica , Vitis/crescimento & desenvolvimento , Vitis/genética , Frutas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , RNA-Seq , Vitis/efeitos dos fármacos
13.
BMC Plant Biol ; 19(1): 478, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699028

RESUMO

BACKGROUND: Resveratrol is a naturally occurring plant stilbene that exhibits a wide range of valuable biological and pharmacological properties. Although the beneficial effects of trans-resveratrol to human health and plant protection against fungal pathogens and abiotic stresses are well-established, yet little is known about the molecular mechanisms regulating stilbene biosynthesis in plant defense progress. RESULTS: Here, we cloned and identified the Chinese wild grape (Vitis davidii) R2R3-MYB transcription factor VdMYB1, which activates defense responses against invading pathogen. VdMYB1 transcripts were significantly upregulated after inoculation with the grapevine powdery mildew fungus Erysiphe necator (Schw.) Burr. Transient expression analysis using onion epidermal cells and Arabidopsis thaliana protoplasts showed that VdMYB1 was localized in the nucleus. Yeast one-hybrid assays revealed that VdMYB1 acts as a transcriptional activator. Grapevine leaves transiently overexpressing VdMYB1 showed a lower number of fungal conidiophores compared with wild-type leaves. Overexpression of VdMYB1 in grapevine leaves did not alter the expression of genes in salicylic acid- and jasmonate-dependent pathways, but affected the expression of stilbene synthase (STS) genes, key regulators of flavonoid metabolism. Results of electrophoretic mobility shift assays and in vivo transcriptional activation assays showed that VdMYB1 binds to the MYB binding site (MYBBS) in the STS2 gene promoter, thus activating STS2 transcription. In heterologous expression assays using tobacco leaves, VdMYB1 activated STS2 gene expression and increased the accumulation of resveratrol. CONCLUSIONS: Our study showed that VdMYB1 activates STS2 gene expression to positively regulate defense responses, and increases the content of resveratrol in leaves.


Assuntos
Aciltransferases/genética , Fatores de Transcrição/genética , Vitis/genética , Proteínas de Arabidopsis , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/metabolismo , Vitis/enzimologia , Vitis/imunologia
14.
BMC Plant Biol ; 19(1): 433, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623556

RESUMO

BACKGROUND: Studies have shown that HSP20 (heat-shock protein 20) genes play important roles in regulating plant growth, development, and stress response. However, the grape HSP20 gene family has not been well studied. RESULTS: A total of 48 VvHSP20 genes were identified from the grape genome, which were divided into 11 subfamilies (CI, CII, CIII, CV, CVI, CVII, MI, MII, ER, CP and PX/Po) based on a phylogenetic analysis and subcellular localization. Further structural analysis showed that most of the VvHSP20 genes (93.8%) had no intron or only one intron, while genes that clustered together based on a phylogenetic tree had similar motifs and evolutionarily conserved structures. The HSP20s share a conservedα-crystalline domain (ACD) and the different components of the ACD domain suggest the functional diversity of VvHSP20s. In addition, the 48 VvHSP20 genes were distributed on 12 grape chromosomes and the majority of VvHSP20 genes were located at the proximal or distal ends of chromosomes. Chromosome mapping indicated that four groups of VvHSP20 genes were identified as tandem duplication genes. Phytohormone responsive, abiotic and biotic stress-responsive, and plant development-related cis-elements were identified from the cis-regulatory elements analysis of VvHSP20s. The expression profiles of VvHSP20s genes (VvHSP20-1, 11, 14, 17, 18, 19, 20, 24, 25, 28, 31, 39, 42, and 43) were largely similar between RNA-Seq and qRT-PCR analysis after hydrogen peroxide (H2O2) treatment. The results showed that most VvHSP20s were down-regulated by H2O2 treatment during fruit development. VvHSP20s genes were indeed found to be involved in the grape berry development and differences in their transcriptional levels may be the result of functional differentiation during evolution. CONCLUSIONS: Our results provide valuable information on the evolutionary relationship of genes in the VvHSP20 family, which is useful for future studies on the functional characteristics of VvHSP20 genes in grape.


Assuntos
Genoma de Planta/genética , Proteínas de Choque Térmico HSP20/genética , Peróxido de Hidrogênio/farmacologia , Família Multigênica , Vitis/genética , Frutas/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP20/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Estresse Fisiológico , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento
15.
Int J Mol Sci ; 20(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480584

RESUMO

Powdery mildew is a disease caused by fungal pathogens that harms grape leaves and fruits. The TIFY gene family is a plant-specific super-family involved in the process of plants' development and their biotic and abiotic stress responses. This study aimed to learn the function of the VvTIFY9 gene to investigate molecular mechanisms of grape resistance to powdery mildew. A VvTIFY9 protein encoding a conserved motif (TIF[F/Y]XG) was characterized in grape (Vitis vinifera). Sequence analysis confirmed that VvTIFY9 contained this conserved motif (TIF[F/Y]XG). Quantitative PCR analysis of VvTIFY9 in various grape tissues demonstrated that the expression of VvTIFY9 was higher in grape leaves. VvTIFY9 was induced by salicylic acid (SA) and methyl jasmonate (MeJA) and it also quickly responded to infection with Erysiphe necator in grape. Analysis of the subcellular localization and transcriptional activation activity of VvTIFY9 showed that VvTIFY9 located to the nucleus and had transcriptional activity. Arabidopsis that overexpressed VvTIFY9 were more resistant to Golovinomyces cichoracearum, and quantitative PCR revealed that two defense-related genes, AtPR1 and AtPDF1.2, were up-regulated in the overexpressing lines. These results indicate that VvTIFY9 is intimately involved in SA-mediated resistance to grape powdery mildew. This study provides the basis for exploring the molecular mechanism of grape resistance to disease resistance and candidate genes for transgenic disease resistance breeding of grape plants.


Assuntos
Resistência à Doença , Micoses/metabolismo , Doenças das Plantas , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Acetatos/metabolismo , Sequência de Aminoácidos , Ascomicetos , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Ácido Salicílico/metabolismo , Análise de Sequência de Proteína , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/fisiologia , Vitis/fisiologia
17.
BMC Plant Biol ; 18(1): 285, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445920

RESUMO

BACKGROUND: 'Fengzao' is an early-ripening bud mutant of 'Kyoho', which matures nearly 30 days earlier than 'Kyoho'. To gain a better understanding of the regulatory role of miRNAs in early-ripening of grape berry, high-throughput sequencing approach and quantitative RT-PCR validation were employed to identify miRNAs at the genome-wide level and profile the expression patterns of the miRNAs during berry development in 'Kyho' and 'Fengzao', respectively. RESULTS: Nine independent small RNA libraries were constructed and sequenced in two varieties from key berry development stages. A total of 108 known miRNAs and 61 novel miRNAs were identified. Among that, 159 miRNAs identified in 'Fengzao' all completely expressed in 'Kyoho' and there were 10 miRNAs specifically expressed in 'Kyoho'. The expression profiles of known and novel miRNAs were quite similar between two varieties. As the major differentially expressed miRNAs, novel_144, vvi-miR3626-3p and vvi-miR3626-5p only expressed in 'Kyoho', vvi-miR399b and vvi-miR399e were down-regulated in 'Fengzao', while vvi-miR477b-3p up-regulated in 'Fengzao'. According to the expression analysis and previous reports, miR169-NF-Y subunit, miR398-CSD, miR3626-RNA helicase, miR399- phosphate transporter and miR477-GRAS transcription factor were selected as the candidates for further investigations of miRNA regulation role in the early-ripening of grape. The qRT-PCR analyses validated the contrasting expression patterns for these miRNAs and their target genes. CONCLUSIONS: The miRNAome of the grape berry development of 'Kyoho', and its early-ripening bud mutant, 'Fengzao' were compared by high-throughput sequencing. The expression pattern of several key miRNAs and their target genes during grape berry development and ripening stages was examined. Our results provide valuable basis towards understanding the regulatory mechanisms of early-ripening of grape berry.


Assuntos
Frutas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , MicroRNAs/genética , RNA de Plantas/genética , Vitis/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Vitis/crescimento & desenvolvimento
18.
BMC Genomics ; 17(1): 795, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729006

RESUMO

BACKGROUND: Early ripening is an important desirable attribute for fruit crops. 'Kyoho' is a popular table grape cultivar in many Asian countries. 'Fengzao' is a bud mutant of 'Kyoho' and ripens nearly 30 days earlier than 'Kyoho'. To identify genes controlling early fruit development and ripening in 'Fengzao', RNA-Seq profiles of the two cultivars were compared at 8 different berry developmental stages in both berry peel and flesh tissues. METHODS: RNA-Seq profiling of berry development between 'Kyoho' and 'Fenzhao' were obtained using the Illumina HiSeq system and analyzed using various statistical methods. Expression patterns of several selected genes were validated using qRT-PCR. RESULTS: About 447 millions of RNA-Seq sequences were generated from 40 RNA libraries covering various different berry developmental stages of 'Fengzao' and 'Kyoho'. These sequences were mapped to 23,178 and 22,982 genes in the flesh and peel tissues, respectively. While most genes in 'Fengzao' and 'Kyoho' shared similar expression patterns over different berry developmental stages, there were many genes whose expression were detected only in 'Fengzao' or 'Kyoho'. We observed 10 genes in flesh tissue and 22 genes in peel tissue were differentially expressed at FDR ≤ 0.05 when the mean expression of 'Fengzao' and 'Kyoho' were compared. The most noticeable one was VIT_214s0030g00950 (a superoxide dismutase gene). This ROS related gene showed lower expression levels in 'Fengzao' than 'Kyoho' in both peel and flesh tissues across various berry developmental stages with the only exception at véraison. VIT_200s0238g00060 (TMV resistance protein n-like) and VIT_213s0067g01100 (disease resistance protein at3g14460-like) were the two other noticeable genes which were found differentially expressed between the two cultivars in both peel and flesh tissues. GO functional category and KEGG enrichment analysis of DEGs indicated that gene activities related to stress and ROS were altered between the two cultivars in both flesh and peel tissues. Several differentially expressed genes of interest were successfully validated using qRT-PCR. CONCLUSIONS: Comparative profiling analysis revealed a few dozens of genes which were differentially expressed in the developing berries of 'Kyoho' and its early ripening mutant 'Fengzao'. Further analysis of these differentially expressed genes suggested that gene activities related to ROS and pathogenesis were likely involved in contributing to the early ripening in 'Fengzao'.


Assuntos
Frutas/genética , Perfilação da Expressão Gênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Vitis/genética , Análise por Conglomerados , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
19.
Planta ; 237(1): 293-303, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053541

RESUMO

RING-finger proteins (RFP) function as ubiquitin ligases and play key roles in plant responses to biotic and abiotic stresses. However, little information is available on the regulation of RFP expression. Here, we isolate and characterize the RFP promoter sequence from the disease-resistant Chinese wild grape Vitis pseudoreticulata accession Baihe-35-1. Promoter-GUS fusion assays revealed that defense signaling molecules, powdery mildew infection, and heat stress induce VpRFP1 promoter activity. By contrast, the RFP1 promoter isolated from Vitis vinifera was only slightly induced by pathogen infection and heat treatment. By promoter deletion analysis, we found that the -148 bp region of the VpRFP1 promoter was the core functional promoter region. We also found that, in Arabidopsis, VpRFP1 expressed under its own promoter activated defense-related gene expression and improved disease resistance, but the same construct using the VvRFP1 promoter slightly improve disease resistance. Our results demonstrated that the -148 bp region of the VpRFP1 promoter plays a key role in response to pathogen and heat stress, and suggested that expression differences between VpRFP1 and VvRFP1 may be key for the differing disease resistance phenotypes of the two Vitis genotypes.


Assuntos
Temperatura Alta , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ubiquitina-Proteína Ligases/genética , Vitis/genética , Acetatos/farmacologia , Ascomicetos/fisiologia , Sequência de Bases , Ciclopentanos/farmacologia , Resistência à Doença/genética , Fluorometria , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Oxilipinas/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Sequências Reguladoras de Ácido Nucleico/genética , Ácido Salicílico/farmacologia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Estresse Fisiológico , Vitis/metabolismo , Vitis/microbiologia
20.
New Phytol ; 200(3): 834-846, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23905547

RESUMO

Ubiquitin-mediated regulation responds rapidly to specific stimuli; this rapidity is particularly important for defense responses to pathogen attack. Here, we investigated the role of the E3 ubiquitin ligase Erysiphe necator-induced RING finger protein 1 (EIRP1) in the defense response of Chinese wild grapevine Vitis pseudoreticulata. The regulatory function of E3 ubiquitin ligase EIRP1 was investigated using molecular, genetic and biochemical approaches. EIRP1 encodes a C3HC4-type Really Interesting New Gene (RING) finger protein that harbors E3 ligase activity. This activity requires the conserved RING domain, and VpWRKY11 also interacts with EIRP1 through the RING domain. VpWRKY11 localizes to the nucleus and activates W-box-dependent transcription in planta. EIRP1 targeted VpWRKY11 in vivo, resulting in VpWRKY11 degradation. The expression of EIRP1 and VpWRKY11 responds rapidly to powdery mildew in Vitis pseudoreticulata grapevine; also, overexpression of EIRP1 in Arabidopsis confers enhanced resistance to the pathogens Golovinomyces cichoracearum and Pseudomonas syringae pv tomato DC3000. Our data suggest that the EIRP1 E3 ligase positively regulates plant disease resistance by mediating proteolysis of the negative regulator VpWRKY11 via degradation by the 26S proteasome.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vitis/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Genes de Plantas , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Pseudomonas syringae , Domínios RING Finger , Transcrição Gênica , Vitis/metabolismo , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA