Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(39): 17748-17752, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36149317

RESUMO

Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.


Assuntos
Metais , Água , Catálise , Cobalto , Ligantes , Espectrometria de Massas , Oxirredução , Água/química
2.
Anal Chem ; 94(27): 9801-9810, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766488

RESUMO

Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.


Assuntos
Dicloretos de Etileno , Ânions , Cátions , Dicloretos de Etileno/química , Cinética , Eletricidade Estática
3.
Anal Chem ; 93(3): 1515-1522, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356146

RESUMO

Trans-interfacial behaviors of multiple ionic species at the interface between two immiscible electrolyte solutions (ITIES) are of importance to biomembrane mimicking, chemical and biosensing, and interfacial molecular catalysis. Utilizing host-guest interaction to facilitate ion transfer is an effective and commonly used method to decrease the Gibbs energy of transfer of a target molecule. Herein, we investigated a facilitated ion transfer (FIT) process of poly(amidoamine)dendrimer (PAMAM, G0-G2) by dibenzo-18-crown-6 (DB18C6) at the microinterfaces between water and 1,2-dichloroethane (µ-W/DCE). Because of the host-guest interaction between a dendrimer and a ligand, negative shifts of the transfer potentials were observed using cyclic voltammetry or Osteryoung square wave voltammetry. From the FIT behavior of the dendrimer, we revealed that each DB18C6 could selectively coordinate with one amino group. We first evaluated the protonated status of the intermediate state (1:2) exactly under the conditions the dendrimer (G1) transfers across the interface using the electrochemical mass spectrometry (EC-MS)-hyphenated technique, which is much smaller than the protonated status in the water phase (1:8 to 14). Using the same methodology, we also studied the facilitated transfer behaviors of G0 and G2. Based on these results, we put forward the mechanism of the FIT process, which might involve a deprotonating process at the interface for higher-generation dendrimers.

4.
J Am Chem Soc ; 141(33): 13212-13221, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31353892

RESUMO

Proton-coupled electron transfer (PCET) reactions at various interfaces (liquid/membrane, solid/electrolyte, liquid/liquid) lie at the heart of many processes in biology and chemistry. Mechanistic study can provide profound understanding of PCET and rational design of new systems. However, most mechanisms of PCET reactions at a liquid/liquid interface have been proposed based on electrochemical and spectroscopic data, which lack direct evidence for possible intermediates. Moreover, a liquid/liquid interface as one type of soft interface is dynamic, making the investigation of interfacial reactions very challenging. Herein a novel electrochemistry method coupled to mass spectrometry (EC-MS) was introduced for in situ study of the oxygen reduction reaction (ORR) by ferrocene (Fc) under catalysis from cobalt tetraphenylporphine (CoTPP) at liquid/liquid interfaces. The key units are two types of gel hybrid ultramicroelectrodes (agar-gel/organic hybrid ultramicroelectrodes and water/PVC-gel hybrid ultramicroelectrodes), which were made based on dual micro- or nanopipettes. A solidified liquid/liquid interface can be formed at the tip of these pipettes, and it serves as both an electrochemical cell and a nanospray emitter for mass spectrometry. We demonstrated that the solidified L/L interfaces were very similar to typical L/L interfaces. Key CoTPP intermediates of the ORR at the liquid/liquid interfaces were identified for the first time, and the four-electron oxygen reduction pathway predominated, which provides valuable insights into the mechanism of the ORR. Theoretical simulation has further supported the possibility of formation of intermediates. This type of platform is promising for in situ tracking and identifying intermediates to study complicated reactions at liquid/liquid interfaces or other soft interfaces.

5.
Adv Mater ; 34(7): e2106618, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862816

RESUMO

The lithium-sulfur (Li-S) battery is one of the most promising next generation energy storage systems due to its high theoretical specific energy. However, the shuttle effect of soluble lithium polysulfides formed during cell operation is a crucial reason for the low cyclability suffered by current Li-S batteries. As a result, an in-depth mechanistic understanding of the sulfur cathode redox reactions is urgently required for further advancement of Li-S batteries. Herein, the direct observation of polysulfides in a Li-S battery is reported by an in situ hyphenated technique of electrochemistry and mass spectrometry. Several short-lived lithium polysulfide intermediates during sulfur redox have been identified. Furthermore, this method is applied to a mechanistic study of an electrocatalyst that has been observed to promote the polysulfides conversion in a Li-S cell. Through the abundance distributions of various polysulfides before and after adding the electrocatalyst, compelling experimental evidences of catalytic selectivity of cobalt phthalocyanine to those long-chain polysulfide intermediates are obtained. This work can provide guidance for the design of novel cathode to overcome the shuttle effect and facilitate the sulfur redox kinetics.

6.
Cell Discov ; 4: 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323948

RESUMO

Posttranslational modification of key host proteins by virulence factors is an important theme in bacterial pathogenesis. A remarkable example is the reversible modifications of the small GTPase Rab1 by multiple effectors of the bacterial pathogen Legionella pneumophila. Previous studies have shown that the effector SetA, dependent on a functional glucosyltransferase domain, interferes with host secretory pathways. However, the enzymatic substrate(s) of SetA in host cells remains unknown. Here, by using cross-linking mass spectrometry we uncovered Rab1 as the target of SetA during L. pneumophila infection. Biochemical studies establish that SetA covalently attaches a glucose moiety to Thr75 within the switch II region of Rab1, inhibiting its intrinsic GTPase activity. Moreover, we found that SetA preferentially modifies the GDP-bound form of Rab1 over its GTP-associated state and the modification of Rab1 inhibits its interaction with the GDP dissociation inhibitor GDI1, allowing for Rab1 activation. Our results thus add an extra layer of regulation on Rab1 activity and provide a mechanistic understanding of its inhibition of the host secretory pathways as well as cellular toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA