Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38366567

RESUMO

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, analysis of these in patients is complicated by their treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell intrinsic role of DOCK2 in the priming of anti-viral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1-disease, albeit not as effectively as wild type cells. These results shed light on a cellular deficiency that is likely to impact anti-viral immunity in DOCK2-deficient patients.

2.
J Immunol ; 206(7): 1505-1514, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658297

RESUMO

IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.


Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/genética , Fator de Transcrição Ikaros/genética , Mutação Puntual/genética , Animais , Formação de Anticorpos , Células HEK293 , Haploinsuficiência , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células NIH 3T3
3.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417019

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Autoimunidade/genética , Fator Ativador de Células B/metabolismo , Linfócitos B , Lúpus Eritematoso Sistêmico/genética , Células Precursoras de Linfócitos B
4.
PeerJ ; 11: e16254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920843

RESUMO

Armadillo (ARM) was a gene family important to plants, with crucial roles in regulating plant growth, development, and stress responses. However, the properties and functions of ARM family members in maize had received limited attention. Therefore, this study employed bioinformatics methods to analyze the structure and evolution of ARM-repeat protein family members in maize. The maize (Zea mays L.) genome contains 56 ARM genes distributed over 10 chromosomes, and collinearity analysis indicated 12 pairs of linkage between them. Analysis of the physicochemical properties of ARM proteins showed that most of these proteins were acidic and hydrophilic. According to the number and evolutionary analysis of the ARM genes, the ARM genes in maize can be divided into eight subgroups, and the gene structure and conserved motifs showed similar compositions in each group. The findings shed light on the significant roles of 56 ZmARM domain genes in development and abiotic stress, particularly drought stress. RNA-Seq and qRT-PCR analysis revealed that drought stress exerts an influence on specific members of the ZmARM family, such as ZmARM4, ZmARM12, ZmARM34 and ZmARM36. The comprehensive profiling of these genes in the whole genome, combined with expression analysis, establishes a foundation for further exploration of plant gene function in the context of abiotic stress and reproductive development.


Assuntos
Perfilação da Expressão Gênica , Zea mays , Zea mays/genética , Regiões Promotoras Genéticas , Proteínas de Plantas/genética , Estresse Fisiológico/genética
5.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577614

RESUMO

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, patients with these diseases are by definition rare. In addition, any analysis is complicated by treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. Further, we found that they have a critical, cell intrinsic role of DOCK2 in the clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. These results provide a contributing cause for the frequent and devastating viral infections seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell immunity.

6.
Sci Immunol ; 8(80): eadd1728, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36800411

RESUMO

In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.


Assuntos
Centro Germinativo , Linfócitos T Auxiliares-Indutores , Disponibilidade Biológica , Diferenciação Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Antígenos CD40
7.
Sci Immunol ; 8(79): eade7953, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36662884

RESUMO

Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.


Assuntos
Regulação da Expressão Gênica , Fatores Reguladores de Interferon , Camundongos , Animais , Humanos , Linfócitos B , DNA/metabolismo , Mutação
8.
Sci Rep ; 10(1): 19440, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173142

RESUMO

Astrocytes and oligodendrocytes play essential roles in regulating neural signal transduction along neural circuits in CNS. The perfect coordination of neuron/astrocyte and neuron/oligodendrocyte entities was termed as neuron-glia integrity recently. Here we monitored the status of neuron-glia integrity via non-invasive neuroimaging methods and demonstrated the substructures of it using other approaches in an animal model of maternal separation with early weaning (MSEW), which mimics early life neglect and abuse in humans. Compared to controls, MSEW rats showed higher glutamate level, but lower GABA in prefrontal cortex (PFC) detected by chemical exchange saturation transfer and 1H-MRS methods, lower levels of glial glutamate transporter-1 and ATP-α, but increased levels of glutamate decarboxylase-65 and glutamine synthetase in PFC; reduced fractional anisotropy in various brain regions revealed by diffusion tensor imaging, along with increased levels of N-acetyl-aspartate measured by 1H-MRS; and hypomyelination in PFC as evidenced by relevant cellular and molecular changes.


Assuntos
Neuroglia/metabolismo , Neurônios/metabolismo , Desmame , Animais , Astrócitos/metabolismo , Imagem de Tensor de Difusão , Transportador 2 de Aminoácido Excitatório/metabolismo , Glutamato Descarboxilase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Masculino , Camundongos , Oligodendroglia/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA