Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 248: 118312, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295971

RESUMO

Overuse of chlorinated disinfectants leads to a significant accumulation of disinfection by-products. Trichloroacetic acid (TCA) is a typical carcinogenic disinfection by-product. The efficacy of the conventional degradation process is reduced by the complex nature of its structure, causing a yearly increase in its prevalence within the ecological environment and consequent infliction of significant harm. In this paper, TCA was chosen as the research subject, Fe/Ni bimetallic nanoparticles were employed as the reducing catalyst, ZIF-8@HMON as the catalytic carrier combined with Fe/Ni nanoparticles, and peroxymonosulfate (PMS) was introduced to construct the reducing-advanced oxidation synergistic system and investigated the effect of this system on the degradation performance and degradation pathway of TCA. Various characterization techniques, including TEM, SEM, XRD, FT-IR, XPS, BET, were employed to investigate the morphology, element composition and structure of composite materials analysis. Moreover, the conditions for TCA degradation can be optimized by changing the experimental environment. The results showed that 25 mg of composite catalyst (mole ratio Fe: Ni = 1:1) and 10 mg of PMS effectively degraded TCA within 20-80 mg/L range at pH = 3 and 55 °C, achieving maximum degradation within 20 min. Finally, the potential pathways of TCA degradation were analyzed using EPR and LC-MS, and the corresponding reaction mechanisms were proposed.


Assuntos
Nanopartículas , Ácido Tricloroacético , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxidos/química , Nanopartículas/química
2.
J Environ Manage ; 366: 121723, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003897

RESUMO

The inefficiency of catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) is primarily attributed to the sluggish circulation of redox couples. Herein, a carbon defects-enriched NBC-C3N5@CoMn (NCC) was synthesized through a self-assembly approach. The carbon defects within the NCC induce the electron trap effect, thereby facilitating the efficient cycling of redox couples in photo-Fenton-like processes during contaminant degradation. This effect enables the self-regeneration of the NCC catalyst. The reductive redox couples (Co (II) and Mn (II)) are continuously regenerated following the degradation process. Within the NCC, CoMn layered double hydroxides (LDHs) act as primary active sites, promoting the generation of hydroxyl radicals (•OH), sulfate radicals (SO4•-) and singlet oxygen (1O2) through continuous electron gain and loss. Additionally, the internal electric field established within the NCC further accelerates electron transfer. Density Functional Theory (DFT) calculations confirm that the carbon defects-enriched NCC exhibits lower adsorption energies and higher electron transfer efficiencies than carbon defect-deficient NCC. This study introduces a novel photocatalyst with self-regenerating capabilities, presenting an innovative approach to regulate redox couples in SR-AOPs for sustainable degradation.

3.
Water Sci Technol ; 89(1): 170-186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38214993

RESUMO

In this study, we synthesized Fe3O4 using the co-precipitation method and then prepared magnetic carrier LDHs@Fe3O4 by immobilizing layered double hydroxide on Fe3O4 by in situ growth method. Cellulase was immobilized on this magnetic carrier by using glutaraldehyde as a coupling agent, which can be used for degrading Methoxychlor (MXC). The results demonstrated the maximum MXC removal efficiency of 73.4% at 45 °C and pH = 6.0 with excellent reusability. Through kinetic analysis, it was found that the degradation reaction conforms to the Langmuir-Hinshelwood model and is a first-order reaction. Finally, according to the EPR analysis, the active radicals in the system were found to be OH· and the degradation mechanism was proposed in combination with LC-MS. This study provides a feasible method for degrading organochlorine pesticides, which can be used for groundwater purification.


Assuntos
Celulase , Hidróxidos , Nanocompostos , Metoxicloro , Cinética
4.
Nanotechnology ; 34(10)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36542353

RESUMO

Ellipsoidal-Fe3O4@SiO2@mSiO2-C18@dopamine hydrochloride-graphene quantum dots-folic acid (ellipsoidal-HMNPs@PDA-GQDs-FA), a dual-functional drug carrier, was stepwise constructed. Theα-Fe2O3ellipsoidal nanoparticles were prepared by a hydrothermal method, and then coated with SiO2by Stöber method. The resulting core-shell structure, Fe3O4@SiO2@mSiO2-C18magnetic nano hollow spheres, abbreviated as HMNPs, was finally grafted with graphene quantum dots (GQDs), dopamine hydrochloride (PDA) and folic acid (FA) by amide reaction to obtain HMNPs@PDA-GQDs-FA. Transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and element analysis proved the successful construction of the HMNPs@PDA-GQDs-FA nanoscale carrier-cargo composite. The carrier HMNPs@PDA-GQDs-FA has higher load (51.63 ± 1.53%) and release (38.56 ± 1.95%) capacity for gambogic acid (GA). Cytotoxicity test showed that the cell survival rate was above 95%, suggesting the cytotoxicity of the carrier-cargo was very low. The cell lethality (74.91 ± 1.2%) is greatly improved after loading GA because of the magnetic targeting of HMNPs, the targeting performance of FA to tumor cells, and the pH response to the surrounding environment of tumor cells of PDA. All results showed that HMNPs@PDA-GQDs-FA had good biocompatibility and could be used in the treatment of VX2 tumor cells after loading GA.


Assuntos
Grafite , Pontos Quânticos , Pontos Quânticos/química , Grafite/farmacologia , Grafite/química , Ácido Fólico , Dióxido de Silício , Dopamina
5.
Haematologica ; 106(3): 829-837, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31974191

RESUMO

Hemophilia B is an X-linked recessive bleeding disorder caused by abnormalities in the coagulation factor IX gene. Without prophylactic treatment, patients experience frequent spontaneous bleeding episodes. Well-characterized animal models are valuable for determining the pathobiology of the disease and testing novel therapeutic innovations. Here, we generated a porcine model of hemophilia B using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. Moreover, we tested the possibility of hemophilia B therapy by gene insertion. Frequent spontaneous joint bleeding episodes that occurred in hemophilia B pigs allowed a thorough investigation of the pathological process of hemophilic arthropathy. In contrast to the hemophilia B pigs, which showed a severe bleeding tendency and joint damage, the transgenic pigs carrying human coagulation factor IX exhibited a partial improvement of bleeding. In summary, this study not only offers a translational hemophilia B model for exploring the pathological process of hemophilic arthropathy but also provides a possibility for the permanent correction of hemophilia in the future by genome editing in situ.


Assuntos
Hemofilia A , Hemofilia B , Animais , Sistemas CRISPR-Cas , Fator IX/genética , Hemofilia A/genética , Hemofilia B/genética , Hemofilia B/terapia , Hemorragia/genética , Humanos , Suínos
6.
Cell Mol Life Sci ; 77(4): 719-733, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31302752

RESUMO

Cytidine base editors (CBEs) have been demonstrated to be useful for precisely inducing C:G-to-T:A base mutations in various organisms. In this study, we showed that the BE4-Gam system induced the targeted C-to-T base conversion in porcine blastocysts at an efficiency of 66.7-71.4% via the injection of a single sgRNA targeting a xeno-antigen-related gene and BE4-Gam mRNA. Furthermore, the efficiency of simultaneous three gene base conversion via the injection of three targeting sgRNAs and BE4-Gam mRNA into porcine parthenogenetic embryos was 18.1%. We also obtained beta-1,4-N-acetyl-galactosaminyl transferase 2, alpha-1,3-galactosyltransferase, and cytidine monophosphate-N-acetylneuraminic acid hydroxylase deficient pig by somatic cell nuclear transfer, which exhibited significantly decreased activity. In addition, a new CBE version (termed AncBE4max) was used to edit genes in blastocysts and porcine fibroblasts (PFFs) for the first time. While this new version demonstrated a three genes base-editing rate of 71.4% at the porcine GGTA1, B4galNT2, and CMAH loci, it increased the frequency of bystander edits, which ranged from 17.8 to 71.4%. In this study, we efficiently and precisely mutated bases in porcine blastocysts and PFFs using CBEs and successfully generated C-to-T and C-to-G mutations in pigs. These results suggest that CBEs provide a more simple and efficient method for improving economic traits, reducing the breeding cycle, and increasing disease tolerance in pigs, thus aiding in the development of human disease models.


Assuntos
Citidina/genética , Edição de Genes/métodos , Suínos/genética , Animais , Blastocisto/metabolismo , Sistemas CRISPR-Cas , Galactosiltransferases/genética , Vetores Genéticos/genética , Oxigenases de Função Mista/genética , Mutagênese , N-Acetilgalactosaminiltransferases/genética , RNA Guia de Cinetoplastídeos/genética , Suínos/embriologia
7.
J Am Chem Soc ; 142(7): 3316-3320, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32003216

RESUMO

The combination of ferroelectric-optical properties in halide perovskites has attracted tremendous interess because of its potential for optoelectronic and energy applications. However, very few reports focus on the ferroelectricity of all-inorganic halide perovskites quantum dots. Herein, we report a excellent ferroelectricity in CsPbBr3 quantum dots (QDs) with a saturation polarization of 0.25 µC/cm2. Differential scanning calorimetry, X-ray diffraction, and transmission electronic microscopy revealed that the mechanism of ferroelectric-paraelectric switching of CsPbBr3 QDs can be attributed to the phase transition from cubic phase (Pm3̅m) to the orthorhombic phase (Pna21). In the orthorhombic CsPbBr3, the distortion of octahedral [PbBr6]4- structural units and the off-center Cs+ generated the slightly separated centers of positive charge and negative charge, resulting in the ferroelectric properties. The variable-temperature emission spectrum from 328 to 78 K exhibits green luminescence and a gradual red shift due to the phase transition. This finding opens up an avenue to explore the ferroelectric-optical properties of inorganolead halide perovskites for high-performance multifunctional materials.

8.
PLoS Pathog ; 14(12): e1007193, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543715

RESUMO

Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is one of the most detrimental diseases, and leads to significant economic losses in the swine industry. Despite efforts by many government authorities to stamp out the disease from national pig populations, the disease remains widespread. Here, antiviral small hairpin RNAs (shRNAs) were selected and then inserted at the porcine Rosa26 (pRosa26) locus via a CRISPR/Cas9-mediated knock-in strategy. Finally, anti-CSFV transgenic (TG) pigs were produced by somatic nuclear transfer (SCNT). Notably, in vitro and in vivo viral challenge assays further demonstrated that these TG pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality, and disease resistance could be stably transmitted to the F1-generation. Altogether, our work demonstrated that RNA interference (RNAi) technology combining CRISPR/Cas9 technology offered the possibility to produce TG animal with improved resistance to viral infection. The use of these TG pigs can reduce CSF-related economic losses and this antiviral strategy may be useful for future antiviral research.


Assuntos
Antivirais , Peste Suína Clássica/prevenção & controle , Engenharia Genética/métodos , Animais , Animais Geneticamente Modificados , Vírus da Febre Suína Clássica , Suínos
9.
Cell Mol Life Sci ; 76(20): 4155-4164, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31030226

RESUMO

Evolved xCas9(3.7) variant with broad PAM compatibility has been reported in cell lines, while its editing efficiency was site-specific. Here, we show that xCas9(3.7) can recognize a broad PAMs including NGG, NGA, and NGT, in both embryos and Founder (F0) rabbits. Furthermore, the codon-optimized xCas9-derived base editors, exBE4 and exABE, can dramatically improve the base editing efficiencies in rabbit embryos. Our results demonstrated that the optimized xCas9 with expanded PAM compatibility and enhanced base editing efficiency could be used for precise gene modifications in organisms.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Efeito Fundador , Edição de Genes/métodos , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR/metabolismo , Códon , Distrofina/genética , Distrofina/metabolismo , Embrião de Mamíferos , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Microinjeções , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Coelhos , Repetições de Trinucleotídeos , Zigoto
10.
Inorg Chem ; 58(7): 4394-4398, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869877

RESUMO

A new proton-conducting material (C6H14N2)[NiV2O6H8(P2O7)2]·2H2O (1) was hydrothermally synthesized by using 1,4-diazabicyclo[2,2,2]octane (DABCO) as the template. Its inorganic framework, determined by single crystal X-ray diffraction, is constructed by the connection of V/NiO6 octahedral to P2O7 pyrophosphate units through sharing oxygen atoms, giving rise to three-dimensional (3D) intersecting 6-, 8-, and 12-ring channels along the [100], [010], and [001] directions, respectively, in which there are ordered protonated DABCO cations balancing negative charge of the framework and disordered water molecules. Complex impedance measurements on polycrystalline samples gave proton conductivities of 4.9 × 10-3 and 2.0 × 10-2 S cm-1 at 25 and 60 °C under high humidity conditions, respectively. The activation energy is 0.38 eV.

11.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717129

RESUMO

A novel 3-D open-framework zinc borovanadate [Zn6(en)3][(VIVO)6(VVO)6O6(B18O36(OH)6)·(H2O)]2·14H2O (1, en = ethylenediamine) was hydrothermally obtained and structurally characterized. The framework was built from [V12B18O54(OH)6(H2O)]10- polyanion clusters bridged by Zn(en) complex fragments. The compound not only possessed a three-dimensional open-framework structure with unique plane-shaped channels, but also exhibited excellent catalytic activities for the oxidation of α-phenethyl alcohol.


Assuntos
Compostos de Boro/química , Álcool Feniletílico/química , Vanadatos/química , Zinco/química , Catálise , Cinética , Modelos Moleculares , Oxirredução
12.
J Nanosci Nanotechnol ; 18(4): 2971-2978, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442982

RESUMO

In the present work, three differently shaped mesoporous silica nanoparticles, spherical nano-SiO2, tubular mesoporous SiO2 and vesicle-like mesoporous SiO2 (VSL), were prepared and used to immobilize Horse radish peroxidase (HRP), and their enzyme's activity was also evaluated. It was found that the VSL immobilized HRP displayed higher specific activity than free enzyme and other two differently shaped silica immobilized HRP. After immobilization, the thermal stability, pH tolerance resistance and storage stability on vesicle-like SiO2 were studied as well. In addition, the kinetic constants Km and Vmax for HRP were significantly altered by immobilization. The affinity for HRP towards its substrate increased (with decreasing Km), leading to enhanced catalytic efficiency (with increased Vmax). Moreover, the reusability for degradation of methoxychlor (MXC) by VSL immobilized enzyme was studied and its degradation products were detected by GC-MS and NMR analysis.


Assuntos
Estabilidade Enzimática , Peroxidase do Rábano Silvestre/metabolismo , Nanoestruturas , Dióxido de Silício/química , Enzimas Imobilizadas , Metoxicloro , Temperatura
13.
Transgenic Res ; 26(6): 799-805, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993973

RESUMO

CRISPR/Cas9 has emerged as one of the most popular genome editing tools due to its simple design and high efficiency in multiple species. Myostatin (MSTN) negatively regulates skeletal muscle growth and mutations in myostatin cause double-muscled phenotype in various animals. Here, we generated myostatin mutation in Erhualian pigs using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. The protein level of myostatin precursor decreased dramatically in mutant cloned piglets. Unlike myostatin knockout Landrace, which often encountered health issues and died shortly after birth, Erhualian pigs harboring homozygous mutations were viable. Moreover, myostatin knockout Erhualian pigs exhibited partial double-muscled phenotype such as prominent muscular protrusion, wider back and hip compared with wild-type piglets. Genome editing in Chinese indigenous pig breeds thus holds great promise not only for improving growth performance, but also for protecting endangered genetic resources.


Assuntos
Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas , Mutação , Miostatina/genética , Suínos/genética , Animais , Feminino , Técnicas de Inativação de Genes , Homozigoto , Músculo Esquelético/fisiologia , Técnicas de Transferência Nuclear , Transfecção/métodos
14.
J Environ Sci (China) ; 38: 52-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26702968

RESUMO

In this study, cage-like mesoporous silica was used as the carrier to immobilize laccase by a physical approach, followed by encapsulating with chitosan/alginate microcapsule membranes to form microcapsules of immobilized laccase based on layer-by-layer technology. The relationship between laccase activity recovery/leakage rate and the coating thickness was simultaneously investigated. Because the microcapsule layers have a substantial network of pores, they act as semipermeable membranes, while the laccase immobilized inside the microcapsules acts as a processing plant for degradation of 2,4-dichlorophenol. The microcapsules of immobilized laccase were able to degrade 2,4-dichlorophenol within a wide range of 2,4-dichlorophenol concentration, temperature and pH, with mean degradation rate around 62%. Under the optimal conditions, the thermal stability and reusability of immobilized laccase were shown to be improved significantly, as the removal rate and degradation rate remained over 40.2% and 33.8% respectively after 6cycles of operation. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR), diisobutyl phthalate and dibutyl phthalate were identified as the products of 2,4-dichlorophenol degradation by the microcapsules of immobilized laccase and laccase immobilized by a physical approach, respectively, further demonstrating the degradation mechanism of 2,4-dichlorophenol by microcapsule-immobilized laccase.


Assuntos
Clorofenóis/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lacase/química , Lacase/metabolismo , Dióxido de Silício/química
15.
J Nanosci Nanotechnol ; 14(7): 5518-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758060

RESUMO

Ordered mesoporous silica was successfully synthesized by using different chain-length chiral anionic surfactants, N-acylalanine and N-acylvaline as templates, and N-trimethoxy silylpropyl-N, N, N-trimethyl ammonium (TMAPS) as a co-structure-directing agent (CSDA) under weakly acidic conditions. The synthesized products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen sorption analysis. In the TMAPS/N-acylalanine system, the mesophase changed from a 3D disordered stucture into a 3D hexagonally structure for the first, and finally into a 3D cubic structure with increased hydrophobic chain lengths of the anionic surfactants. But in the TMAPS/N-acylvaline system, the mesophase changed into a 2D hexagonally structure for the first, and finally into a 3D hexagonally structured mesoporous silica with the helical pore channels. The changes of the pore diameter, the surface area and the pore volume with the chain lengths were also discussed.


Assuntos
Aminoácidos/química , Cristalização/métodos , Nanoporos/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Teste de Materiais , Conformação Molecular , Peso Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
16.
RSC Adv ; 14(22): 15408-15412, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741971

RESUMO

Iron-based electrochemical catalysts used to modify electrodes for biosensing have received more attention from biosensor manufacturers because of their excellent biocompatibility and low cost. In this work, a fast-ion conductor potassium ferrite (K2Fe4O7) modified glassy carbon electrode (GCE) was prepared for detecting epinephrine (EP) by electrochemical techniques. The obtained K2Fe4O7/GCE electrode exhibited not only a wide linear range over EP concentration from 2 µM to 260 µM with a detection limit of 0.27 µM (S/N = 3) but also high selectivity toward EP in the presence of common interferents ascorbic acid (AA) and uric acid (UA), as well as good reproducibility and stability.

17.
Environ Sci Pollut Res Int ; 31(17): 25202-25215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466381

RESUMO

Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.


Assuntos
Ferro , Metoxicloro , Oligoquetos , Animais , Metoxicloro/química , Enzimas Imobilizadas/química , Lacase/metabolismo , Dióxido de Silício/química , Oligoquetos/metabolismo , Sulfetos
18.
Open Biol ; 14(6): 230427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862020

RESUMO

Hypertrophic cardiomyopathy (HCM) is a monogenic cardiac disorder commonly induced by sarcomere gene mutations. However, the mechanism for HCM is not well defined. Here, we generated transgenic MYH7 R453C and MYH6 R453C piglets and found both developed typical cardiac hypertrophy. Unexpectedly, we found serious fibrosis and cardiomyocyte loss in the ventricular of MYH7 R453C, not MYH6 R453C piglets, similar to HCM patients. Then, RNA-seq analysis and western blotting identified the activation of ERK1/2 and PI3K-Akt pathways in MYH7 R453C. Moreover, we observed an increased expression of fetal genes and an excess of reactive oxygen species (ROS) in MYH7 R453C piglet models, which was produced by Nox4 and subsequently induced inflammatory response. Additionally, the phosphorylation levels of Smad2/3, ERK1/2 and NF-kB p65 proteins were elevated in cardiomyocytes with the MYH7 R453C mutation. Furthermore, epigallocatechin gallate, a natural bioactive compound, could be used as a drug to reduce cell death by adjusting significant downregulation of the protein expression of Bax and upregulated Bcl-2 levels in the H9C2 models with MYH7 R453C mutation. In conclusion, our study illustrated that TGF-ß/Smad2/3, ERK1/2 and Nox4/ROS pathways have synergistic effects on cardiac remodelling and inflammation in MYH7 R453C mutation.


Assuntos
Cadeias Pesadas de Miosina , NADPH Oxidase 4 , NF-kappa B , Espécies Reativas de Oxigênio , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Fator de Crescimento Transformador beta/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Suínos , Miócitos Cardíacos/metabolismo , Humanos , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/genética , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases , Animais Geneticamente Modificados , Proteína Smad2/metabolismo , Proteína Smad2/genética , Mutação , Proteína Smad3/metabolismo , Proteína Smad3/genética , Remodelação Ventricular , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Ratos
19.
Front Microbiol ; 15: 1347821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601935

RESUMO

The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.

20.
Zool Res ; 45(4): 833-844, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39004861

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus (PRRSV), resulting in substantial economic losses in the swine industry. Modifying the CD163 SRCR5 domain, either through deletion or substitution, can eff1ectively confer resistance to PRRSV infection in pigs. However, large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance. Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs. In the current study, we identified a specific functional amino acid in CD163 that influences PRRSV proliferation. Viral infection experiments conducted on Marc145 and PK-15 CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV (HP-PRRSV) proliferation by preventing viral binding and entry. Furthermore, individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type (WT) pigs, confirming effective resistance to HP-PRRSV. Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs. These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs, providing novel insights into controlling future PRRSV outbreaks.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Mutação Puntual , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Receptores de Superfície Celular , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Animais Geneticamente Modificados/genética , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA