Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(27): 12572-12581, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38924490

RESUMO

The kinetics of electrocatalytic reactions are closely related to the number and intrinsic activity of the active sites. Open active sites offer easy access to the substrate and allow for efficient desorption and diffusion of reaction products without significant hindrance. Metal-organic frameworks (MOFs) with open active sites show great potential in this context. To increase the density of active sites, trimesic acid was utilized as a ligand to anchor more Ni sites and in situ construct the nickel foam-loaded Ni-based trimesic MOF electrocatalyst (Ni-TMA-MOF/NF). When tested as an electrocatalyst for benzyl alcohol oxidation, Ni-TMA-MOF/NF exhibited lower overpotential and superior durability compared to Ni foam-loaded Ni-based terephthalic MOF electrocatalyst (Ni-PTA-MOF/NF) and Ni(OH)2 nanosheet array (Ni(OH)2/NF). Ni-TMA-MOF/NF required only a low potential of 1.65 V to achieve a high current density of 400 mA cm-2. Even after 40000 s of electrocatalytic oxidation at 1.5 V, Ni-TMA-MOF/NF maintained a current density of 175 mA cm-2 with ∼68% retention, showing its potential for benzyl alcohol oxidation. Through a combination of experimental and theoretical investigations, it was found that Ni-TMA-MOF/NF displayed superior electrocatalytic activity due to an optimized electron structure with high-valence Ni species and a high density of active sites, enabling long-term stable operation at high current densities. This study provides a new perspective on the design of electrocatalysts for benzyl alcohol oxidation.

2.
Nano Lett ; 23(19): 9119-9125, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773017

RESUMO

The discharge product Li2O2 is difficult to decompose in lithium-oxygen batteries, resulting in poor reversibility and cycling stability of the battery, and the morphology of Li2O2 has a great influence on its decomposition during the charging process. Therefore, reasonable design of the catalyst structure to improve the density of catalyst active sites and make Li2O2 form a morphology which is easy to decompose in the charging process will help improve the performance of battery. Here, we demonstrate a series of hollow nanoboxes stacked by Co3O4 nanoparticles with different sizes. The results show that the surface of the nanoboxes composed of smaller size Co3O4 nanoparticles contains abundant pore structure and higher concentration of oxygen vacancies, which changes the adsorption energy of reactants and intermediates, providing more nucleation sites for Li2O2, thereby forming Li2O2 with high dispersion, which is easier to decompose during charging, and eventually improve the performance of the battery. This provides an important idea for the structural design of the cathode catalyst in lithium-oxygen batteries and the regulation of Li2O2 morphology.

3.
Small ; 19(48): e2302979, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37528713

RESUMO

CoNi-LDH (layered CoNi double hydroxides) hollow nanocages with specific morphology are obtained by Ni ion etching of ZIF-67 (Zeolitic imidazolate framework-67). The structure of the layered materials is further modified by molecular intercalation. The original interlayer anions are replaced by the ion exchange effect of terephthalic acid, which helps to increase the interlayer distance of the material. The intercalated cage-like structures not only benefit for the storage of oxygen, and the discharge product reaction, but also have more support between the material layers. The experimental results show that the excessive use of intercalation agent will affect structural stability of the intercalated CoNi-LDH. By adjusting the amount of terephthalic acid, the intercalated CoNi-LDH-2 (with 0.02 mmol terephthalic acid intercalated) is not easy to collapse after 209 cycles and shows the best electrochemical performance in Li-O2 battery.

4.
J Am Chem Soc ; 144(18): 8204-8213, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471968

RESUMO

Aqueous-phase oxygen evolution reaction (OER) is the bottleneck of water splitting. The formation of the O-O bond involves the generation of paramagnetic oxygen molecules from the diamagnetic hydroxides. The spin configurations might play an important role in aqueous-phase molecular electrocatalysis. However, spintronic electrocatalysis is almost an uncultivated land for the exploration of the oxygen molecular catalysis process. Herein, we present a novel magnetic FeIII site spin-splitting strategy, wherein the electronic structure and spin states of the FeIII sites are effectively induced and optimized by the Jahn-Teller effect of Cu2+. The theoretical calculations and operando attenuated total reflectance-infrared Fourier transform infrared (ATR FT-IR) reveal the facilitation for the O-O bond formation, which accelerates the production of O2 from OH- and improves the OER activity. The Cu1-Ni6Fe2-LDH catalyst exhibits a low overpotential of 210 mV at 10 mA cm-2 and a low Tafel slope (33.7 mV dec-1), better than those of the initial Cu0-Ni6Fe2-LDHs (278 mV, 101.6 mV dec-1). With the Cu2+ regulation, we have realized the transformation of NiFe-LDHs from ferrimagnets to ferromagnets and showcase that the OER performance of Cu-NiFe-LDHs significantly increases compared with that of NiFe-LDHs under the effect of a magnetic field for the first time. The magnetic-field-assisted Cu1-Ni6Fe2-LDHs provide an ultralow overpotential of 180 mV at 10 mA cm-2, which is currently one of the best OER performances. The combination of the magnetic field and spin configuration provides new principles for the development of high-performance catalysts and understandings of the catalytic mechanism from the spintronic level.

5.
Small ; 18(26): e2201150, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638481

RESUMO

Regulating the structure and morphology of discharge product is one of the key points for developing high performance Li-O2 batteries (LOBs). In this study, the reaction mechanism of LOB is successfully controlled by the regulated fine structure of cobalt oxide through tuning the crystallization process. It is demonstrated that the cobalt oxide with lower crystallinity shows stronger affinity toward LiO2 , inducing the growth of film-like LiO2 on the electrode surface and inhibiting the further conversion to Li2 O2 . The batteries catalyzed by the lower crystallinity cobalt oxide hollow spheres which pyrolyzed from ZIF-67 at 260 °C (ZIF-67-260), go through the generation and decomposition of amorphous film-like LiO2 , which significantly reduces the charge overpotential and improves the cycle life. By contrast, the ZIF-67 hollow spheres pyrolyzed at 320 °C (ZIF-67-320) with better crystallinity are more likely to go through the solution-mediated mechanism and induce the aggregation of discharge product, resulting in the sluggish kinetics and limited performance. The combined density functional theory data also directly support the strong relationship between the adsorption toward LiO2 by the electrocatalyst and the battery performance. This work provides an important way for tuning the intermediate and constructing the high-performance battery system.

6.
Opt Express ; 30(15): 26201-26211, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236815

RESUMO

In this paper, we propose a pre-trained-combined neural network (PTCN) as a comprehensive solution to the inverse design of an integrated photonic circuit. By utilizing both the initially pre-trained inverse and forward model with a joint training process, our PTCN model shows remarkable tolerance to the quantity and quality of the training data. As a proof of concept demonstration, the inverse design of a wavelength demultiplexer is used to verify the effectiveness of the PTCN model. The correlation coefficient of the prediction by the presented PTCN model remains greater than 0.974 even when the size of training data is decreased to 17%. The experimental results show a good agreement with predictions, and demonstrate a wavelength demultiplexer with an ultra-compact footprint of 2.6×2.6µm2, a high transmission efficiency with a transmission loss of -2dB, a low reflection of -10dB, and low crosstalk around -7dB simultaneously.

7.
Inorg Chem ; 61(19): 7308-7317, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35507543

RESUMO

Ultrathin two-dimensional metal-organic frameworks (2D MOFs) have the potential to improve the oxidation of benzyl alcohol (BA) with a large surface area and open catalytic active sites. To achieve high-efficiency electrocatalysts for the oxidation of benzyl alcohol, a moderate solvothermal method was evolved to synthesize a series of 2D MOFs on nickel foam (Ni-MOF/NF, NiCo-61-MOF/NF, NiCo-21-MOF/NF). As the electrocatalyst used for the oxidation of benzyl alcohol, NiCo-61-MOF/NF presented a lower overpotential and superior chemical durability than other electrocatalysts; it only required a potential of ∼1.52 V (vs RHE) to reach 338.16 mA cm-2, with an oxidation efficiency of more than 86%. Besides, after continuous electrocatalysis for 20 000 s at 1.42 V (vs RHE), the current density of NiCo-61-MOF/NF nanosheets was still 38.67 mA cm-2 with 77.34% retention. This demonstrated that NiCo-61-MOF/NF nanosheet electrocatalysts had great potential for benzyl alcohol oxidation. From both the experimental and theoretical studies, it was discovered that NiCo-61-MOF/NF nanosheets have the highest electrocatalytic activity due to their distinctive ultrathin 2D structure, optimized electron structure, and more accessible active sites. This finding would pave a brand-new thought for the design of electrocatalysts with electrocatalytic activity for benzyl alcohol oxidation (EBO).

8.
Chem Rev ; 120(23): 12903-12993, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050699

RESUMO

Bioelectrocatalysis is an interdisciplinary research field combining biocatalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Catálise , Eletrodos , Oxirredução
9.
Eur Neurol ; 85(6): 486-491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830843

RESUMO

INTRODUCTION: Familial amyloid polyneuropathy is currently prevalent worldwide as the transthyretin (TTR) Val30Met mutation, and there are other types of mutations. The purpose of this study was to understand the clinical manifestations, electrophysiological characteristics, and outcomes of hormone-related therapy in patients with the TTR Val30Leu mutation in China. METHODS: Clinical data were collected from 9 members of a family with the TTR Val30Leu mutation in China, and blood samples of 7 members of the family were sequenced. The electrophysiological examinations of 4 of them were collected and analysed. RESULTS: A total of 7 people had the TTR gene c.148G>T missense mutation and the TTR protein Val30Leu mutation in this family, and the positive members all had similar symptoms, such as limb paraesthesia and gastrointestinal symptoms. In addition, electrophysiological examination showed abnormal nerve conduction velocity in all 4 patients. CONCLUSIONS: The clinical manifestations of this mutation involve mainly limb sensory or motor disorders or gastrointestinal symptoms or both, and the electrophysiological examination shows neurogenic damage.


Assuntos
Neuropatias Amiloides Familiares , Humanos , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/diagnóstico , Mutação/genética , Mutação de Sentido Incorreto , China
10.
Angew Chem Int Ed Engl ; 61(1): e202112511, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34709699

RESUMO

We demonstrate a new material by intercalating Mo3 S13 2- into Mg/Al layered double hydroxide (abbr. Mo3 S13 -LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3 S13 -LDH displays ultra-high selectivity of Ag+ , Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+ >Hg2+ >Cu2+ >Pb2+ ≥Co2+ , Ni2+ , Zn2+ , Cd2+ . For Ag+ and Hg2+ , extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+ , especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu ) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qm Ag =1073 mg g-1 ) and Hg2+ (qm Hg =594 mg g-1 ) place the Mo3 S13 -LDH at the top of performing sorbent materials. Most importantly, Mo3 S13 -LDH captures Ag+ via two paths: a) formation of Ag2 S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0 ). The Mo3 S13 -LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.

11.
J Am Chem Soc ; 142(18): 8374-8382, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286819

RESUMO

Two obstacles limit the application of oxidoreductase-based asymmetric synthesis. One is the consumption of high stoichiometric amounts of reduced cofactor. The other is the low solubility of organic substrates, intermediates, and products in the aqueous phase. In order to address these two obstacles to oxidoreductase-based asymmetric synthesis, a biphasic bioelectrocatalytic system was constructed and applied. In this study, the preparation of chiral ß-hydroxy nitriles catalyzed by alcohol dehydrogenase (AdhS) and halohydrin dehalogenase (HHDH) was investigated as a model bioelectrosynthesis, since they are high-value intermediates in statin synthesis. Diaphorase (DH) was immobilized by a cobaltocene-modified poly(allylamine) redox polymer on the electrode surface (DH/Cc-PAA bioelectrode) to achieve effective bioelectrocatalytic NADH regeneration. Since AdhS is a NAD-dependent dehydrogenase, the diaphorase-modified biocathode was used to regenerate NADH to support the conversion from ethyl 4-chloroacetoacetate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE) catalyzed by AdhS. The addition of methyl tert-butyl ether (MTBE) as an organic phase not only increased the uploading of COBE but also prevented the spontaneous hydrolysis of COBE, extended the lifetime of DH/Cc-PAA bioelectrode, and increased the Faradaic efficiency and the concentration of generated (R)-ethyl-4-cyano-3-hydroxybutyrate ((R)-CHCN). After 10 h of reaction, the highest concentration of (R)-CHCN in the biphasic bioelectrocatalytic system was 25.5 mM with 81.2% enantiomeric excess (eep). The conversion ratio of COBE achieved 85%, which was 8.8 times higher than that achieved with the single-phase system. Besides COBE, two other substrates with aromatic ring structures were also used in this biphasic bioelectrocatalytic system to prepare the corresponding chiral ß-hydroxy nitriles. The results indicate that the biphasic bioelectrocatalytic system has the potential to produce a variety of ß-hydroxy nitriles with different structures.


Assuntos
Álcool Desidrogenase/metabolismo , Hidrolases/metabolismo , Nitrilas/metabolismo , Álcool Desidrogenase/química , Biocatálise , Técnicas Eletroquímicas , Hidrolases/química , Estrutura Molecular , Nitrilas/química
12.
J Am Chem Soc ; 142(3): 1574-1583, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31855420

RESUMO

The new material Polypyrrole-Mo3S13 (abbr. Mo3S13-Ppy) is a new material prepared by ion-exchange between Ppy-NO3 and (NH4)2Mo3S13. The Mo3S13-Ppy was designed to exhibit strong selectivity for Ag+ and highly toxic Hg2+ in mixtures with other ions. It displays an apparent selectivity ranking of Hg2+ > Ag+ ≥ Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+. The strong affinity of Mo3S13-Ppy for Ag+ and Hg2+ was confirmed with extremely high distribution coefficients (Kd) (∼107 mL/g) and remarkable removal efficiencies (>99.99%), resulting in <1 ppb concentrations of these ions. Furthermore, Mo3S13-Ppy achieved excellent separation selectivity for Ag+ from Cu2+ (even at a high Cu2+/Ag+ ratio, the molar ratio of 867 and mass ratio of 500) because of the special structure of Mo3S132- and its component Mo4+ and (S2)2-. This is promising for the direct extraction of low-grade silver from copper-rich minerals. The maximum Ag uptake capacity of 408 mg/g is redox-based and surprisingly involves the deposition of large, millimeter sized, metallic silver (Ag0) crystals on the surface of Mo3S13-Ppy.

13.
Chemistry ; 26(32): 7244-7249, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32153069

RESUMO

NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+ , resulting in electron-deficient properties of the Ni sites, which would function as "electron-hungry" sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li-NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm-2 , which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2 . Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.

14.
Angew Chem Int Ed Engl ; 59(23): 8969-8973, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32198829

RESUMO

Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.


Assuntos
Alcanos/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Oxigenases de Função Mista/metabolismo , Eletrodos , Transporte de Elétrons , Compostos de Epóxi/química , Hidroxilação , Metilação , Oxigênio/química , Pseudomonas putida/enzimologia , Safrol/análogos & derivados , Safrol/química , Especificidade por Substrato
15.
J Am Chem Soc ; 141(26): 10417-10430, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244177

RESUMO

The design of low-cost yet high-efficiency electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) over a wide pH range is highly challenging. We now report a hierarchical co-assembly of interacting MoS2 and Co9S8 nanosheets attached on Ni3S2 nanorod arrays which are supported on nickel foam (NF). This tiered structure endows high performance toward HER and OER over a very broad pH range. By adjusting the molar ratio of the Co:Mo precursors, we have created CoMoNiS-NF- xy composites ( x: y means Co:Mo molar ratios ranging from 5:1 to 1:3) with controllable morphology and composition. The three-dimensional composites have an abundance of active sites capable of universal pH catalytic HER and OER activity. The CoMoNiS-NF-31 demonstrates the best electrocatalytic activity, giving ultralow overpotentials (113, 103, and 117 mV for HER and 166, 228, and 405 mV for OER) to achieve a current density of 10 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. It also shows a remarkable balance between electrocatalytic activity and stability. Based on the distinguished catalytic performance of CoMoNiS-NF-31 toward HER and OER, we demonstrate a two-electrode electrolyzer performing water electrolysis over a wide pH range, with low cell voltages of 1.54, 1.45, and 1.80 V at 10 mA cm-2 in alkaline, acidic, and neutral media, respectively. First-principles calculations suggest that the high OER activity arises from electron transfer from Co9S8 to MoS2 at the interface, which alters the binding energies of adsorbed species and decreases overpotentials. Our results demonstrate that hierarchical metal sulfides can serve as highly efficient all-pH (pH = 0-14) electrocatalysts for overall water splitting.

16.
Chemistry ; 25(63): 14258-14266, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31386223

RESUMO

Atmospheric CO2 is a cheap and abundant source of carbon for synthetic applications. However, the stability of CO2 makes its conversion to other carbon compounds difficult and has prompted the extensive development of CO2 reduction catalysts. Bioelectrocatalysts are generally more selective, highly efficient, can operate under mild conditions, and use electricity as the sole reducing agent. Improving the communication between an electrode and a bioelectrocatalyst remains a significant area of development. Through the examples of CO2 reduction catalyzed by electroactive enzymes and whole cells, recent advancements in this area are compared and contrasted.

17.
Inorg Chem ; 58(17): 11449-11457, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397562

RESUMO

MOFs present potential application in electrocatalysis. The structure-activity of the Ni-MOFs with different morphologies, nanowires, neurons, and urchins is systemically investigated. The Ni-MOFs were controllably synthesized via the facile solvothermal method. Among them, the Ni-MOF nanowires are endowed with the highest electrocatalytic activity due to the unique structure, more exposed active sites, lower charge transfer resistance, and the fast and direct electron transfer in 1D structures. The typical morphology of the Ni-MOF nanowires is ca. 10 nm in diameter and several micrometers in length. When employed as an electrocatalyst in urea oxidation reaction, it exhibits a lower overpotential than and superior stability to the Ni-MOFs with other morphologies. Ni-MOF nanowires require a potential of ∼0.80 V (vs Ag/AgCl) to obtain 160 mA cm-2. In addition, after continuous electrocatalyzing for 3600 s at 0.40 V (vs Ag/AgCl), the current density retention of Ni-MOF nanowires could still reach more than 60% (>12 mA cm-2), which demonstrates Ni-MOF nanowires as promising electrocatalysts for urea oxidation.

18.
Inorg Chem ; 58(6): 4014-4018, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843395

RESUMO

The development of novel and highly efficient bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an ongoing challenge. The Cr3+ cation has a special electronic configuration (t32ge0g), which facilitates charge transfer and electron capture. However, Cr-based materials applied on water-splitting electrocatalysis is still a research void up to now. Herein, a novel amorphous γ-CrOOH was developed as a bifunctional electrocatalyst toward overall water splitting for the first time. It shows extraordinary HER activity with an ultralow overpotential of only 149 mV at 50 mA cm-2. Meantime, there is a small overpotential of 334 mV at 50 mA cm-2 for the OER. Importantly, the bifunctional electrocatalyst for overall water-splitting electrocatalysis can work with a cell voltage of merely 1.56 V at 10 mA cm-2. Amorphous γ-CrOOH has effectively enhanced the intrinsic electrochemical activity via density functional theoretical calculations. Therefore, this work not only provides a new method for preparation of amorphous γ-CrOOH but also expands the types of catalysts for water splitting.

19.
J Therm Biol ; 86: 102448, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31789236

RESUMO

Human thermal adaptation is an important factor of indoor thermal comfort and energy conservation. To study the effect of indoor thermal history on cold adaptation in the early winter, climate chamber tests were conducted in cold environments at 16 °C with two different thermal experience groups. The groups are divided as follows: the natural ventilation (NV) group consisted of subjects living in naturally ventilated buildings (approximately 11.8 ±â€¯3.4 °C in winter (Liu, H., Wu, Y., Li, B., Cheng, Y., Yao, R., 2017. Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China. Energy and Buildings 140, 9-18)) and the air conditioning (AC) group consisted of subjects living in air-conditioned buildings for at least one year before the climate chamber experiments. The experiments on the NV and AC groups were conducted between December 1-13 and December 15-25, respectively. Each group consisted of 20 subjects wearing winter clothes (1.15 ±â€¯0.05 clo). The thermal sensation votes (TSVs) and thermal comfort votes (TCVs) in both groups were investigated and the subjects' skin temperatures were monitored during the experiments. The results showed that the mean TCV and TSV of both groups were not significantly different in the early winter. However, differences were observed in the subjects' localized body parts. The skin temperatures of the chest and arms of subjects in the NV group were higher than those in the AC group after exposure for 60 min at 16 °C, while calves skin temperatures of subjects in the NV group were lower. In addition, subjects in the AC group were found to feel colder compared to those in the NV group in cold environments at the same skin temperature. Thus, this study provides information about thermal comfort based on thermal experience in early winter.


Assuntos
Ar Condicionado , Habitação , Estações do Ano , Sensação Térmica , Ventilação , Aclimatação , Adulto , Feminino , Humanos , Masculino , Temperatura Cutânea , Temperatura , Adulto Jovem
20.
Nanotechnology ; 29(21): 215602, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29515020

RESUMO

A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA