Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408967

RESUMO

Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.


Assuntos
Envelhecimento , Doenças Neurodegenerativas , Envelhecimento/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Doenças Neurodegenerativas/metabolismo
2.
Nutrients ; 15(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111059

RESUMO

Nutrition during the developmental stages has long-term effects on adult physiology, disease and lifespan, and is termed nutritional programming. However, the underlying molecular mechanisms of nutritional programming are not yet well understood. In this study, we showed that developmental diets could regulate the lifespan of adult Drosophila in a way that interacts with various adult diets during development and adulthood. Importantly, we demonstrated that a developmental low-yeast diet (0.2SY) extended both the health span and lifespan of male flies under nutrient-replete conditions in adulthood through nutritional programming. Males with a low-yeast diets during developmental stages had a better resistance to starvation and lessened decline of climbing ability with age in adulthood. Critically, we revealed that the activity of the Drosophila transcription factor FOXO (dFOXO) was upregulated in adult males under developmental low-nutrient conditions. The knockdown of dFOXO, with both ubiquitous and fat-body-specific patterns, can completely abolish the lifespan-extending effect from the larval low-yeast diet. Ultimately, we identify that the developmental diet achieved the nutritional programming of the lifespan of adult males by modulating the activity of dFOXO in Drosophila. Together, these results provide molecular evidence that the nutrition in the early life of animals could program the health of their later life and their longevity.


Assuntos
Proteínas de Drosophila , Drosophila , Masculino , Animais , Longevidade/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/genética , Larva , Saccharomyces cerevisiae , Fatores de Transcrição Forkhead/genética , Dieta , Nutrientes
3.
Exp Gerontol ; 162: 111765, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278642

RESUMO

Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme. It is a novel member of the sirtuin family that has been shown to have an important role in various molecular pathways in glycolysis, cancer, and neurodegenerative responses. Recently, SIRT6 has emerged as a prominent research issue because its biochemical activity and regulation are possibly associated with human metabolism and disease. In this review, we summarized the connection between SIRT6 and glycolytic metabolism; discussed recent developments in the involvement of SIRT6 in a variety of life-threatening illnesses, including cancer, neurodegenerative diseases and cardiovascular disease; and explored possible treatment approaches for those diseases with SIRT6. This review provides insights into the role of SIRT6 in disease.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Sirtuínas , Envelhecimento , Glicólise , Humanos , Neoplasias/metabolismo , Sirtuínas/metabolismo
4.
Mech Ageing Dev ; 204: 111673, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398002

RESUMO

Gut homeostasis is a dynamically balanced state to maintain intestinal health. Vacuolar ATPases (V-ATPases) are multi-subunit proton pumps that were driven by ATP hydrolysis. Several subunits of V-ATPases may be involved in the maintenance of intestinal pH and gut homeostasis in Drosophila. However, the specific role of each subunit in this process remains to be elucidated. Here, we knocked down the Drosophila gene VhaAC39-1 encoding the V0d1 subunit of V-ATPases to assess its function in gut homeostasis. Knockdown of VhaAC39-1 resulted in the loss of midgut acidity, the increase of the number of gut microbiota and the impairment of intestinal epithelial integrity in flies. The knockdown of VhaAC39-1 led to the hyperproliferation of intestinal stem cells, increasing the number of enteroendocrine cells, and activated IMD signaling pathway and JAK-STAT signaling pathway, inducing intestinal immune response of Drosophila. In addition, knockdown of VhaAC39-1 caused the disturbance of many physiological indicators such as food intake, triglyceride level and fecundity of flies, which ultimately led to the shortening of the life span of Drosophila. These results shed light on the gut homeostasis mechanisms which would help to identify interventions to promote healthy aging.


Assuntos
Proteínas de Drosophila , Drosophila , Adenosina Trifosfatases/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostase/fisiologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA