Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 18493-18507, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859003

RESUMO

The performance of silicon photonic integrated circuits (PICs), especially wavelength filters, can be highly sensitive to variations in the fabrication process due to the large refractive index contrast of the silicon on insulator platform. This paper proposes an easy-to-implement and efficient time-domain variability analysis method for passive PICs. The method utilizes the polynomial chaos expansion technique to construct Verilog-A based models for estimating the statistical information of stochastic passive PICs. In comparison to existing methods, this approach is considerably easy to implement, efficient, and exhibits superior scalability, particularly as the numbers of ports and random parameters in the studied PICs increase. The technique is demonstrated via the time-domain variability analysis of a ring-resonator-based wavelength filter and a Mach-Zehnder interferometer-based demultiplexer filter.

2.
Glob Chang Biol ; 30(1): e17110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273584

RESUMO

There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13 C or 14 C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2 ), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (-8.92%). Contrary to the residual C partitioning observed under eCO2 , the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.


Assuntos
Dióxido de Carbono , Carbono , Biomassa , Solo , Água
3.
Glob Chang Biol ; 30(5): e17350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38804101

RESUMO

With over one-third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time (τ) to climate change. Results show a global mean litter carbon release rate ( k $$ k $$ ) of 0.69 year-1 (ranging from 0.09-5.6 year-1). Under future climate scenarios, global mean τ is projected to decrease by a mean of 2.7% (SSP 1-2.6) and 5.9% (SSP 5-8.5) during 2071-2100 period. Locally, the alleviation of temperature and moisture restrictions corresponded to obvious decreases in τ in cold and arid regions, respectively. In contract, τ in tropical humid broadleaf forests increased by 4.6% under SSP 5-8.5. Our findings highlight the vegetation type as a powerful proxy for explaining global patterns in foliar litter carbon release rates and the role of climate conditions in predicting responses of carbon release to climate change. Our observation-based estimates could refine carbon cycle parameterization, improving projections of carbon cycle-climate feedbacks.


Assuntos
Carbono , Mudança Climática , Folhas de Planta , Folhas de Planta/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Florestas , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Aquecimento Global , Árvores/metabolismo
4.
Opt Express ; 31(6): 9591-9607, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157526

RESUMO

We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.

5.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36607160

RESUMO

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Mudança Climática , Clima , Solo
6.
FASEB J ; 36(9): e22524, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36006032

RESUMO

As a surveillance mechanism, the activated spindle assembly checkpoint (SAC) potently inhibits the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) to ensure accurate chromosome segregation. Although the protein phosphatase 2A (PP2A) has been proposed to be both, directly and indirectly, involved in spindle assembly checkpoint inactivation in mammalian cells, whether it is similarly operating in the fission yeast Schizosaccharomycer pombe has never been demonstrated. Here, we investigated whether fission yeast PP2A is involved in SAC silencing by following the rate of cyclin B (Cdc13) destruction at SPBs during the recovery phase in nda3-KM311 cells released from the inhibition of APC/C by the activated spindle checkpoint. The timing of the SAC inactivation is only slightly delayed when two B56 regulatory subunits (Par1 and Par2) of fission yeast PP2A are absent. Overproduction of individual PP2A subunits either globally in the nda3-KM311 arrest-and-release system or locally in the synthetic spindle checkpoint activation system only slightly suppresses the SAC silencing defects in PP1 deletion (dis2Δ) cells. Our study thus demonstrates that the fission yeast PP2A is not a key regulator actively involved in SAC inactivation.


Assuntos
Schizosaccharomyces , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Mamíferos/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fuso Acromático/fisiologia
7.
J Environ Manage ; 347: 119148, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776790

RESUMO

Vegetation restoration is vital for soil ecological restoration in post-mining areas, but a global-scale quantitative assessment of its effects on soil metal elements is lacking. Here, we conducted a meta-analysis with 2308 paired observations collected from 137 publications to evaluate vegetation restoration effects on the concentrations of 17 metal elements, namely K, AK (available K), Ca, Na, Mg, Fe, Mn, Zn, Cu, Al, Cr, Co, Ni, Cd, Sb, Hg, and Pb in post-mining soils. We found that (1) vegetation restoration significantly increased the concentrations of K, AK, Ca, Mg and Co by 43.2, 42.5, 53.4, 53.7, and 137.2%, respectively, but did not affect the concentrations of Na, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, Sb, Hg, and Pb; (2) the effects of vegetation restoration on soil metal concentration were seldom impacted by vegetation type, while soil depth only affected the responses of AK, Cd, and Pb concentrations to vegetation restoration, and leaf type only impacted the responses of Ca and Ni concentrations to vegetation restoration; (3) latitude, elevation, restoration year, climate, and initial soil properties were also important moderator variables of vegetation restoration effects, but their impacts varied among different metals. Overall, our results clearly showed that vegetation restoration in posting-mining areas generally have a positive effect on the concentrations of nutrient elements but did not influence that of toxic elements, which provides useful information for the restoration and reconstruction of soil ecosystem in post-mining areas.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , Ecossistema , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Mercúrio/análise , Poluentes do Solo/análise , Medição de Risco , China
8.
Ecol Lett ; 25(9): 1961-1973, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35875902

RESUMO

Soil fauna plays a key role in regulating biogeochemical cycles, but how multiple global change factors (GCFs) may affect faunal communities remains poorly studied. We conducted a meta-analysis using 1154 observations to evaluate the individual and combined effects of elevated CO2 , nitrogen (N) addition, warming, increased rainfall and drought on soil fauna density and diversity. Here we show that, overall, individual and combined effects of GCFs had negligible effects on soil fauna density and diversity, except that density was negatively affected by drought (-27.4%) and positively affected by increased rainfall individually (+24.9%) and in combination with N addition (+67.3%) or warming (+70.4%). GCF effects varied among taxonomic groups both in magnitude and direction. Variables such as latitude, elevation and experimental setting significantly impacted both individual and combined effects. Our results suggest that soil fauna density is affected by changed rainfall regimes, while diversity is resistant against individual and combined effects of multiple GCFs.


Assuntos
Mudança Climática , Solo , Secas , Ecossistema , Nitrogênio/análise , Microbiologia do Solo
9.
Glob Chang Biol ; 28(22): 6679-6695, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36002993

RESUMO

Changes in precipitation regimes can strongly affect soil nitrogen (N) cycling in terrestrial ecosystems. However, whether altered precipitation regimes may differentially affect soil N cycling between arid and humid biomes at the global scale is unclear. We conducted a meta-analysis using 1036 pairwise observations collected from 194 publications to assess the effects of increased and decreased precipitation on the input (N return from plants), storage (various forms of N in soil), and output (gaseous N emissions) of soil N in arid versus humid biomes at the global scale. We found that (1) increased precipitation significantly increased N input (+12.1%) and output (+34.9%) but decreased N storage (-13.7%), while decreased precipitation significantly decreased N input (-10.7%) and output (-34.8%) but increased N storage (+11.1%); (2) the sensitivity of soil N cycling to increased precipitation was higher in arid regions than in humid regions, while that to decreased precipitation was lower in arid regions than in humid regions; (3) the effect of altered precipitation regimes on soil N cycling was independent of precipitation type (i.e., rainfall vs. snowfall); and (4) the mean annual precipitation regulated soil N cycling in precipitation alteration experiments at the global scale. Overall, our results clearly show that the response of soil N cycling to increased versus decreased precipitation differs between arid and humid regions, indicating the uneven effect of climate change on soil N cycling between these two contrasting climate regions. This implies that ecosystem models need to consider the differential responses of N cycling to altered precipitation regimes in different climatic conditions under future global change scenarios.


Assuntos
Ecossistema , Solo , Clima Desértico , Nitrogênio , Chuva
10.
Glob Chang Biol ; 27(24): 6348-6362, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478579

RESUMO

Changes in precipitation regimes have significant effects on soil carbon (C) cycles; however, these effects may vary in arid versus humid areas. Additionally, the corresponding details of soil C cycles in response to altered precipitation regimes have not been well documented. Here, a meta-analysis was performed using 845 pairwise observations (control vs. increased or decreased precipitation) from 214 published articles to quantify the responses of the input process of exogenous C, the contents of various forms of C in soil, and the soil-atmosphere C fluxes relative to increased or decreased precipitation. The results showed that the effects of altered precipitation regimes did not differ between rainfall and snowfall. Increased precipitation significantly enhanced the soil C inputs, pools and outputs by 18.17%, 18.50%, and 21.04%, respectively, while decreased precipitation led to a significant decline in these soil C parameters by 10.18%, 9.96%, and 17.98%, respectively. The effects of increased precipitation on soil C cycles were more significant in arid areas (where mean annual precipitation, MAP <500 mm), but the effects of decreased precipitation were more significant in humid areas (where MAP ≥500 mm), indicating that the original MAP partially determined the responses of the soil C cycles to altered precipitation regimes. This study implies that for the same of precipitation variation, soil C cycles respond at different magnitudes: not only should the direction (decrease vs. increase) be counted but also the region (arid vs. humid) should be considered. These results deepened our understanding on regional differentiation in soil C cycles under climate change scenarios.


Assuntos
Ecossistema , Solo , Carbono , Ciclo do Carbono , Mudança Climática , Chuva
11.
Glob Chang Biol ; 27(14): 3350-3357, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864334

RESUMO

Spatiotemporal redistribution of incident rainfall in vegetated ecosystems results from the partitioning by plants into intercepted, stemflow, and throughfall fractions. However, variation in patterns and drivers of rainfall partitioning across global biomes remains poorly understood, which limited the ability of climate models to improve the predictions of biome hydrological cycle under global climate change scenario. Here, we synthesized and analyzed the partitioning of incident rainfall into interception, stemflow, and throughfall by trees and shrubs at the global scale using 2430 observations from 236 independent publications. We found that (1) globally, median levels of relative interception, stemflow, and throughfall accounted for 21.8%, 3.2%, and 73.0% of total incident rainfall, respectively; (2) rainfall partitioning varied among different biomes, due to variation in plant composition, canopy structure, and macroclimate; (3) relative stemflow tended to be driven by plant traits, such as crown height:width ratio, basal area, and height, while relative interception and throughfall tended to be driven by plant traits as well as meteorological variables. Our global assessment of patterns and drivers of rainfall partitioning underpins the role of meteorological factors and plant traits in biome-specific ecohydrological cycles. We suggest to include these factors in climate models to improve the predictions of local hydrological cycles and associated biodiversity and function responses to changing climate conditions.


Assuntos
Chuva , Árvores , Ecossistema , Ciclo Hidrológico
12.
Cancer Cell Int ; 21(1): 375, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261480

RESUMO

BACKGROUND: Deubiquitinating enzymes (DUBs) play critical roles in various cancers by modulating functional proteins post-translationally. Previous studies have demonstrated that DUB Josephin Domain Containing 1 (JOSD1) is implicated in tumor progression, however, the role and mechanism of JOSD1 in head and neck squamous cell carcinoma (HNSCC) remain to be explored. In this study, we aimed to identify the clinical significance and function of JOSD1 in HNSCC. METHODS: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to find novel DUBs in HNSCC. Immunohistochemistry assay was performed to determine the expression of JOSD1 in our cohort of 42 patients suffered with HNSCC. Kaplan-Meier analysis was used to identify the correlation between JOSD1 and the prognosis of HNSCC patients. The regulation of BRD4 on JOSD1 was determined by using pharmacological inhibition and gene depletion. The in vitro and in vivo experiments were conducted to elucidate the role of JOSD1 in HNSCC. RESULTS: The results of IHC showed that JOSD1 was aberrantly expressed in HNSCC specimens, especially in the chemoresistant ones. The overexpression of JOSD1 indicated poor clinical outcome of HNSCC patients. Moreover, JOSD1 depletion dramatically impaired cell proliferation and colony formation, and promoted cisplatin-induced apoptosis of HNSCC cells in vitro. Additionally, JOSD1 suppression inhibited the tumor growth and improved chemosensitivity in vivo. The epigenetic regulator BRD4 contributed to the upregulation of JOSD1 in HNSCC. CONCLUSIONS: These results demonstrate that JOSD1 functions as an oncogene in HNSCC progression, and provide a promising target for clinical diagnosis and therapy of HNSCC.

13.
Soft Matter ; 16(45): 10345-10357, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33053003

RESUMO

Externally triggered thermogenic nanoparticles (NPs) are potential drug carriers and heating agents for drug delivery and hyperthermia. A good understanding of the transport and adhesion behaviors of NPs in microvessels is conducive to improving the efficiency of NP-mediated treatment. Given the thermogenesis of NPs and interactions of NP-blood flow, NP-NP, NP-red blood cell (RBC) and ligand-receptor, the movement of NPs in blood flow was modeled using a hybrid immersed boundary and coupled double-distribution-function lattice Boltzmann method. Results show that the margination probability of NPs toward the vessel wall was evidently increased by NP thermogenesis owing to the noticeable variation in blood flow velocity distribution, thereby enhancing their adhesion to the target region. NP-RBC collision can promote NP movement to the acellular layer in microvessels to increase the NP adhesion rate. The number of adhered smaller NPs was larger than that of the larger NPs having the same ligand density due to the enhancement of Brownian force although their adhesion was relatively less firm. Compared with the NPs with a regular shape, the irregularly shaped NPs can adhere to the vessel wall more readily and strongly as a result of the higher turbulence levels caused by NP-blood flow interaction and relatively higher ligand density, which led to a higher rate of NP adhesion.


Assuntos
Microvasos , Nanopartículas , Simulação por Computador , Portadores de Fármacos , Termogênese
14.
Behav Pharmacol ; 31(2&3): 186-195, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30741729

RESUMO

The Toll-like receptor 4 (TLR4) antagonists, (+)-naloxone and (+)-naltrexone, have been reported to decrease self-administration of opioids in rats and to reduce other preclinical indicators of abuse potential. However, under the self-administration conditions studied, the effects of TLR4 antagonists were not reinforcer selective, questioning the involvement of those receptors and their mediated inflammatory response specifically in opioid abuse. The objectives of the current study were to further characterize the reinforcer specificity of TLR4 antagonism in opioid self-administration and to explore its effects in a preclinical model of craving/relapse. The TLR4 antagonist (+)-naltrexone decreased responding in rats trained to self-administer the µ-opioid receptor agonist remifentanil, but with a potency that was not significantly different from that observed in another group of subjects in which responding was maintained by food reinforcement. Responding reinstated by heroin injection was decreased by (+)-naltrexone; however, a similar reduction was not reproduced with the administration of another TLR4 antagonist, lipopolysaccharide from Rhodobacter sphaeroides, administered into the NAcc shell. Thus, TLR4 antagonists lacked reinforcer selectivity in reducing opioid self-administration and were not uniformly effective in a model of craving/relapse, suggesting limitations on the development of (+)-naltrexone or TLR4 antagonists as treatments for opioid abuse.


Assuntos
Naltrexona/farmacologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Heroína/administração & dosagem , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/fisiologia
15.
BMC Infect Dis ; 20(1): 54, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952510

RESUMO

BACKGROUND: Varicella is normally a self-limited childhood disease caused by varicella-zoster virus infection. However, it sometimes causes severe diseases, especially in immunocompromised individuals. We report a case of severe varicella in a young woman. CASE PRESENTATION: A 19-year-old woman presented to the emergency department with abdominal pain and a rash after taking methylprednisolone for 2 weeks for systemic lupus erythematosis. The laboratory data showed leukocytosis, thrombocytopenia, an elevated level of the liver transaminases and disseminated intravascular coagulation. Computed tomography of the abdomen revealed multiple air-fluid levels in the intestines. Hemorrhagic varicella was considered and antiviral therapy as well as immunoglobin were applied. Her condition deteriorated and she eventually died due to multi-organ failure and refractory shock. Next-generation sequencing performed on fluid from an unroofed vesicle confirmed the diagnosis of varicella. CONCLUSION: In its severe form, VZV infection can be fatal, especially in immunocompromised patients. Hemorrhagic varicella can be misdiagnosed by clinicians because of unfamiliar with the disease, although it is associated with a high mortality rate. In patients with suspected hemorrhagic varicella infection, antiviral therapies along with supportive treatment need to be initiated as soon as possible in order to minimize the case fatality rate.


Assuntos
Varicela/diagnóstico , Abdome/diagnóstico por imagem , Dor Abdominal/etiologia , Antivirais/uso terapêutico , Varicela/complicações , Varicela/tratamento farmacológico , Varicela/virologia , DNA Viral/química , DNA Viral/metabolismo , Feminino , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hospedeiro Imunocomprometido , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia , Análise de Sequência de DNA , Tomografia Computadorizada por Raios X , Adulto Jovem
16.
J Med Internet Res ; 22(9): e21915, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32931444

RESUMO

BACKGROUND: The COVID-19 pandemic is associated with common mental health problems. However, evidence for the association between fear of COVID-19 and obsessive-compulsive disorder (OCD) is limited. OBJECTIVE: This study aimed to examine if fear of negative events affects Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores in the context of a COVID-19-fear-invoking environment. METHODS: All participants were medical university students and voluntarily completed three surveys via smartphone or computer. Survey 1 was conducted on February 8, 2020, following a 2-week-long quarantine period without classes; survey 2 was conducted on March 25, 2020, when participants had been taking online courses for 2 weeks; and survey 3 was conducted on April 28, 2020, when no new cases had been reported for 2 weeks. The surveys comprised the Y-BOCS and the Zung Self-Rating Anxiety Scale (SAS); additional items included questions on demographics (age, gender, only child vs siblings, enrollment year, major), knowledge of COVID-19, and level of fear pertaining to COVID-19. RESULTS: In survey 1, 11.3% of participants (1519/13,478) scored ≥16 on the Y-BOCS (defined as possible OCD). In surveys 2 and 3, 3.6% (305/8162) and 3.5% (305/8511) of participants had scores indicative of possible OCD, respectively. The Y-BOCS score, anxiety level, quarantine level, and intensity of fear were significantly lower at surveys 2 and 3 than at survey 1 (P<.001 for all). Compared to those with a lower Y-BOCS score (<16), participants with possible OCD expressed greater intensity of fear and had higher SAS standard scores (P<.001). The regression linear analysis indicated that intensity of fear was positively correlated to the rate of possible OCD and the average total scores for the Y-BOCS in each survey (P<.001 for all). Multiple regressions showed that those with a higher intensity of fear, a higher anxiety level, of male gender, with sibling(s), and majoring in a nonmedicine discipline had a greater chance of having a higher Y-BOCS score in all surveys. These results were redemonstrated in the 5827 participants who completed both surveys 1 and 2 and in the 4006 participants who completed all three surveys. Furthermore, in matched participants, the Y-BOCS score was negatively correlated to changes in intensity of fear (r=0.74 for survey 2, P<.001; r=0.63 for survey 3, P=.006). CONCLUSIONS: Our findings indicate that fear of COVID-19 was associated with a greater Y-BOCS score, suggesting that an environment (COVID-19 pandemic) × psychology (fear and/or anxiety) interaction might be involved in OCD and that a fear of negative events might play a role in the etiology of OCD.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/psicologia , Inquéritos Epidemiológicos , Transtorno Obsessivo-Compulsivo/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/psicologia , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Universidades , Adolescente , Adulto , Ansiedade/epidemiologia , Ansiedade/psicologia , COVID-19 , Medo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/psicologia , Pandemias , Estudos Prospectivos , Escalas de Graduação Psiquiátrica , Adulto Jovem
17.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167388

RESUMO

We proposed and experimentally demonstrated a secure key generation and distribution system that is compatible with optical amplifiers and standard wavelength-division multiplexing (WDM) transmission systems. The key is generated from the phase fluctuations induced by environmental instabilities. The key generation system is tested in a 240 km bidirectional fiber-pair link with multiple optical amplifiers. To demonstrate the compatibility with WDM systems, 38 WDM channels are transmitted together with the key distribution channel. The secret key is protected against eavesdropping and coherence detection attack by the wide-band property of the signal carrier and the fast-changing rate of the phase fluctuations.

18.
Pak J Pharm Sci ; 33(3): 1087-1093, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191233

RESUMO

Modified medial arc incision of Achilles tendon and traditional straight incision were applied to treat 50 cases of old rupture of Achilles tendon. Among them, there were 20 cases involved in the modified medial arc incision of Achilles tendon (group A).Furthermore, 30 cases accepted traditional straight incision treatment (group B). The same rehabilitation program was applied in both groups, combined with the evaluation using the clinical objective examination, subjective satisfaction of patients and the American Orthopaedic Foot and Ankle Society (AOFAS) scores. There was significant difference between group A and group B in the recovery time to normal motion ranges (P<0.05). The average AOFAS score of group A was higher more than (P<0.05). In addition, patients from the two groups did not suffer from cutaneous sensory disturbance of the dorsum of foot due to sural nerve injury, or no deep venous thrombosis. Except for 1 patient with deep infection, all patients recovered to normal motion ranges. The overall curative effect of modified medial arc incision of Achilles tendon is superior to traditional straight incision in the treatment of old Achilles tendon rupture, which is conducive to the early recovery to normal motion ranges before injury.


Assuntos
Tendão do Calcâneo/cirurgia , Procedimentos Ortopédicos , Traumatismos dos Tendões/cirurgia , Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos/efeitos adversos , Complicações Pós-Operatórias/etiologia , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Estudos Retrospectivos , Ruptura , Técnicas de Sutura , Traumatismos dos Tendões/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
19.
Opt Express ; 27(16): A981-A994, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510485

RESUMO

Time-dependent polarized radiative transfer in an atmosphere-ocean system exposed to external illumination is numerically investigated. The specular reflection and transmission effects based on the relative refractive index between the atmosphere and water are considered. A modified Monte Carlo (MMC) algorithm combined with time shift and superposition principle, which significantly improves the computational efficiency of the traditional Monte Carlo (TMC) method, is developed to simulate the time-dependent polarized radiative transfer process. The accuracy and computational superiority of the MMC for polarized radiative transfer in the atmosphere-ocean system are validated, and the time-resolved polarized radiative signals are discussed.

20.
Opt Lett ; 44(5): 1096-1099, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821779

RESUMO

We propose a novel multi-parameter sensing technique based on a Brillouin optical time domain reflectometry in the elliptical-core few-mode fiber, using higher-order optical and acoustic modes. Multiple Brillouin peaks are observed for the backscattering of both the LP01 mode and LP11 mode. We characterize the temperature and strain coefficients for various optical-acoustic mode pairs. By selecting the proper combination of modes pairs, the performance of multi-parameter sensing can be optimized. Distributed sensing of temperature and strain is demonstrated over a 0.5-km elliptical-core few-mode fiber, with the discriminative uncertainty of 0.28°C and 5.81 µÎµ for temperature and strain, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA