Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(1): 25-37.e4, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33238160

RESUMO

Among the five KCNQ channels, also known as the Kv7 voltage-gated potassium (Kv) channels, KCNQ2-KCNQ5 control neuronal excitability. Dysfunctions of KCNQ2-KCNQ5 are associated with neurological disorders such as epilepsy, deafness, and neuropathic pain. Here, we report the cryoelectron microscopy (cryo-EM) structures of human KCNQ4 and its complexes with the opener retigabine or the blocker linopirdine at overall resolutions of 2.5, 3.1, and 3.3 Å, respectively. In all structures, a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule inserts its head group into a cavity within each voltage-sensing domain (VSD), revealing an unobserved binding mode for PIP2. Retigabine nestles in each fenestration, inducing local shifts. Instead of staying within the central pore, linopirdine resides in a cytosolic cavity underneath the inner gate. Electrophysiological analyses of various mutants corroborated the structural observations. Our studies reveal the molecular basis for the modulatory mechanism of neuronal KCNQ channels and provide a framework for structure-facilitated drug discovery targeting these important channels.


Assuntos
Carbamatos/farmacologia , Indóis/farmacologia , Canais de Potássio KCNQ , Fenilenodiaminas/farmacologia , Piridinas/farmacologia , Animais , Microscopia Crioeletrônica , Humanos , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Células Sf9 , Spodoptera
2.
J Hazard Mater ; 353: 372-380, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29684889

RESUMO

The immobilization of organonitrile-degrading bacteria via the addition of biofilm-forming bacteria represents a promising technology for the treatment of organonitrile-containing wastewater, but biofilm-forming bacteria simply mixed with degrading bacteria may reduce the biodegradation efficiency. Nitrile hydratase and amidase genes, which play critical roles in organonitriles degradation, were cloned and transformed into the biofilm-forming bacterium Bacillus subtilis N4 to construct a recombinant bacterium B. subtilis N4/pHTnha-ami. Modified polyethylene carriers with positive charge was applied to promote bacterial adherence and biofilm formation. The immobilized B. subtilis N4/pHTnha-ami was resistant to organonitriles loading shocks and could remove organic cyanide ion with a initial concentration of 392.6 mg/L for 24 h in a moving bed biofilm reactor. The imputed quorum-sensing signal and the high-throughput sequencing analysis of the biofilm indicated that B. subtilis N4/pHTnha-ami was successfully immobilized and became dominant. The successful application of the immobilized recombinant bacterium offers a novel strategy for the biodegradation of recalcitrant compounds.


Assuntos
Acetonitrilas/metabolismo , Acrilonitrila/metabolismo , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Nitrilas/metabolismo , Poluentes Químicos da Água/metabolismo , Amidoidrolases/genética , Reatores Biológicos , Hidroliases/genética , Eliminação de Resíduos Líquidos/métodos
3.
Chemosphere ; 161: 224-232, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27434252

RESUMO

There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-ß-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater.


Assuntos
Acetonitrilas/metabolismo , Aminoidrolases/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Rhodococcus/genética , Poluentes Químicos da Água/metabolismo , Aminoidrolases/biossíntese , Aminoidrolases/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Indução Enzimática , Isopropiltiogalactosídeo/genética , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/farmacologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA