Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 19(2): e1011186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802409

RESUMO

Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Proteína DEAD-box 58 , Enzimas Desubiquitinantes , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Imunidade Inata , Nucleotidiltransferases/metabolismo , Ubiquitina
2.
J Virol ; 95(20): e0102721, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319780

RESUMO

Some lytic proteins encoded by Epstein-Barr virus (EBV) suppress host interferon (IFN) signaling to facilitate viral replication. In this study, we sought to identify and characterize EBV proteins antagonizing IFN signaling. The induction of IFN-stimulated genes (ISGs) by IFN-ß was effectively suppressed by EBV. A functional screen was therefore performed to identify IFN-antagonizing proteins encoded by EBV. EBV tegument protein BGLF2 was identified as a potent suppressor of JAK-STAT signaling. This activity was found to be independent of its stimulatory effect on p38 and JNK pathways. Association of BGLF2 with STAT2 resulted in more pronounced K48-linked polyubiquitination and proteasomal degradation of the latter. Mechanistically, BGLF2 promoted the recruitment of SHP1 phosphatase to STAT1 to inhibit its tyrosine phosphorylation. In addition, BGLF2 associated with cullin 1 E3 ubiquitin ligase to facilitate its recruitment to STAT2. Consequently, BGLF2 suppressed ISG induction by IFN-ß. Furthermore, BGLF2 also suppressed type II and type III IFN signaling, although the suppressive effect on type II IFN response was milder. When pretreated with IFN-ß, host cells became less susceptible to primary infection of EBV. This phenotype was reversed when expression of BGLF2 was enforced. Finally, genetic disruption of BGLF2 in EBV led to more pronounced induction of ISGs. Our study unveils the roles of BGLF2 not only in the subversion of innate IFN response but also in lytic infection and reactivation of EBV. IMPORTANCE Epstein-Barr virus (EBV) is an oncogenic virus associated with the development of lymphoid and epithelial malignancies. EBV has to subvert interferon-mediated host antiviral response to replicate and cause diseases. It is therefore of great interest to identify and characterize interferon-antagonizing proteins produced by EBV. In this study, we perform a screen to search for EBV proteins that suppress the action of interferons. We further show that BGLF2 protein of EBV is particularly strong in this suppression. This is achieved by inhibiting two key proteins STAT1 and STAT2 that mediate the antiviral activity of interferons. BGLF2 recruits a host enzyme to remove the phosphate group from STAT1 thereby inactivating its activity. BGLF2 also redirects STAT2 for degradation. A recombinant virus in which BGLF2 gene has been disrupted can activate host interferon response more robustly. Our findings reveal a novel mechanism by which EBV BGLF2 protein suppresses interferon signaling.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Virais de Fusão/metabolismo , Herpesvirus Humano 4/metabolismo , Interações Hospedeiro-Patógeno , Interferons/metabolismo , Sistema de Sinalização das MAP Quinases , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Proteínas Virais de Fusão/genética , Replicação Viral
3.
J Immunol ; 205(6): 1564-1579, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747502

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human coronavirus causing severe disease and mortality. MERS-CoV infection failed to elicit robust IFN response, suggesting that the virus might have evolved strategies to evade host innate immune surveillance. In this study, we identified and characterized type I IFN antagonism of MERS-CoV open reading frame (ORF) 8b accessory protein. ORF8b was abundantly expressed in MERS-CoV-infected Huh-7 cells. When ectopically expressed, ORF8b inhibited IRF3-mediated IFN-ß expression induced by Sendai virus and poly(I:C). ORF8b was found to act at a step upstream of IRF3 to impede the interaction between IRF3 kinase IKKε and chaperone protein HSP70, which is required for the activation of IKKε and IRF3. An infection study using recombinant wild-type and ORF8b-deficient MERS-CoV further confirmed the suppressive role of ORF8b in type I IFN induction and its disruption of the colocalization of HSP70 with IKKε. Ectopic expression of HSP70 relieved suppression of IFN-ß expression by ORF8b in an IKKε-dependent manner. Enhancement of IFN-ß induction in cells infected with ORF8b-deficient virus was erased when HSP70 was depleted. Taken together, HSP70 chaperone is important for IKKε activation, and MERS-CoV ORF8b suppresses type I IFN expression by competing with IKKε for interaction with HSP70.


Assuntos
Ativação Enzimática/imunologia , Quinase I-kappa B/imunologia , Interferon Tipo I/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Proteínas Virais/imunologia , Betacoronavirus , COVID-19 , Linhagem Celular , Infecções por Coronavirus , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Interferon Tipo I/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Pandemias , Pneumonia Viral , SARS-CoV-2 , Proteínas Virais/metabolismo
4.
FASEB J ; 33(8): 8865-8877, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034780

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is capable of inducing a storm of proinflammatory cytokines. In this study, we show that the SARS-CoV open reading frame 3a (ORF3a) accessory protein activates the NLRP3 inflammasome by promoting TNF receptor-associated factor 3 (TRAF3)-mediated ubiquitination of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). SARS-CoV and its ORF3a protein were found to be potent activators of pro-IL-1ß gene transcription and protein maturation, the 2 signals required for activation of the NLRP3 inflammasome. ORF3a induced pro-IL-1ß transcription through activation of NF-κB, which was mediated by TRAF3-dependent ubiquitination and processing of p105. ORF3a-induced elevation of IL-1ß secretion was independent of its ion channel activity or absent in melanoma 2 but required NLRP3, ASC, and TRAF3. ORF3a interacted with TRAF3 and ASC, colocalized with them in discrete punctate structures in the cytoplasm, and facilitated ASC speck formation. TRAF3-dependent K63-linked ubiquitination of ASC was more pronounced in SARS-CoV-infected cells or when ORF3a was expressed. Taken together, our findings reveal a new mechanism by which SARS-CoV ORF3a protein activates NF-κB and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of p105 and ASC.-Siu, K.-L., Yuen, K.-S., Castaño-Rodriguez, C., Ye, Z.-W., Yeung, M.-L., Fung, S.-Y., Yuan, S., Chan, C.-P., Yuen, K.-Y., Enjuanes, L., Jin, D.-Y. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitinação , Proteínas Estruturais Virais/metabolismo , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Inflamassomos/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Células Vero
5.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104205

RESUMO

Mouse p202 is a disease locus for lupus and a dominant-negative inhibitor of AIM2 inflammasome activation. A human homolog of p202 has not been identified so far. Here, we report a novel transcript isoform of human IFI16-designated IFI16-ß, which has a domain architecture similar to that of mouse p202. Like p202, IFI16-ß contains two HIN domains, but lacks the pyrin domain. IFI16-ß is ubiquitously expressed in various human tissues and cells. Its mRNA levels are also elevated in leukocytes of patients with lupus, virus-infected cells, and cells treated with interferon-ß or phorbol ester. IFI16-ß co-localizes with AIM2 in the cytoplasm, whereas IFI16-α is predominantly found in the nucleus. IFI16-ß interacts with AIM2 to impede the formation of a functional AIM2-ASC complex. In addition, IFI16-ß sequesters cytoplasmic dsDNA and renders it unavailable for AIM2 sensing. Enforced expression of IFI16-ß inhibits the activation of AIM2 inflammasome, whereas knockdown of IFI16-ß augments interleukin-1ß secretion triggered by dsDNA but not dsRNA Thus, cytoplasm-localized IFI16-ß is functionally equivalent to mouse p202 that exerts an inhibitory effect on AIM2 inflammasome.


Assuntos
Proteínas de Ligação a DNA/genética , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Animais , Núcleo Celular/genética , DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-1beta/genética , Camundongos , Isoformas de Proteínas/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética
6.
Nucleic Acids Res ; 46(8): 4054-4071, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29547894

RESUMO

STING is a core adaptor in innate nucleic acid sensing in mammalian cells, on which different sensing pathways converge to induce type I interferon (IFN) production. Particularly, STING is activated by 2'3'-cGAMP, a cyclic dinucleotide containing mixed phosphodiester linkages and produced by cytoplasmic DNA sensor cGAS. Here, we reported on a novel transcript isoform of STING designated STING-ß that dominantly inhibits innate nucleic acid sensing. STING-ß without transmembrane domains was widely expressed at low levels in various human tissues and viral induction of STING-ß correlated inversely with IFN-ß production. The expression of STING-ß declined in patients with lupus, in which type I IFNs are commonly overproduced. STING-ß suppressed the induction of IFNs, IFN-stimulated genes and other cytokines by various immunostimulatory agents including cyclic dinucleotides, DNA, RNA and viruses, whereas depletion of STING-ß showed the opposite effect. STING-ß interacted with STING-α and antagonized its antiviral function. STING-ß also interacted with TBK1 and prevented it from binding with STING-α, TRIF or other transducers. In addition, STING-ß bound to 2'3'-cGAMP and impeded its binding with and activation of STING-α, leading to suppression of IFN-ß production. Taken together, STING-ß sequesters 2'3'-cGAMP second messenger and other transducer molecules to inhibit innate nucleic acid sensing dominantly.


Assuntos
Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Linhagem Celular , DNA/fisiologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Fosforilação , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fenômenos Fisiológicos Virais
7.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468880

RESUMO

Severe complications of Zika virus (ZIKV) infection might be caused by inflammation, but how ZIKV induces proinflammatory cytokines is not understood. In this study, we show opposite regulatory effects of the ZIKV NS5 protein on interferon (IFN) signaling. Whereas ZIKV and its NS5 protein were potent suppressors of type I and type III IFN signaling, they were found to activate type II IFN signaling. Inversely, IFN-γ augmented ZIKV replication. NS5 interacted with STAT2 and targeted it for ubiquitination and degradation, but it had no influence on STAT1 stability or nuclear translocation. The recruitment of STAT1-STAT2-IRF9 to IFN-ß-stimulated genes was compromised when NS5 was expressed. Concurrently, the formation of STAT1-STAT1 homodimers and their recruitment to IFN-γ-stimulated genes, such as the gene encoding the proinflammatory cytokine CXCL10, were augmented. Silencing the expression of an IFN-γ receptor subunit or treatment of ZIKV-infected cells with a JAK2 inhibitor suppressed viral replication and viral induction of IFN-γ-stimulated genes. Taken together, our findings provide a new mechanism by which the ZIKV NS5 protein differentially regulates IFN signaling to facilitate viral replication and cause diseases. This activity might be shared by a group of viral IFN modulators.IMPORTANCE Mammalian cells produce three types of interferons to combat viral infection and to control host immune responses. To replicate and cause diseases, pathogenic viruses have developed different strategies to defeat the action of host interferons. Many viral proteins, including the Zika virus (ZIKV) NS5 protein, are known to be able to suppress the antiviral property of type I and type III interferons. Here we further show that the ZIKV NS5 protein can also boost the activity of type II interferon to induce cellular proteins that promote inflammation. This is mediated by the differential effect of the ZIKV NS5 protein on a pair of cellular transcription factors, STAT1 and STAT2. NS5 induces the degradation of STAT2 but promotes the formation of STAT1-STAT1 protein complexes, which activate genes controlled by type II interferon. A drug that specifically inhibits the IFN-γ receptor or STAT1 shows an anti-ZIKV effect and might also have anti-inflammatory activity.


Assuntos
Interferon gama/metabolismo , Proteínas não Estruturais Virais/imunologia , Zika virus/imunologia , Linhagem Celular , Humanos , Ligação Proteica , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais
9.
J Virol ; 90(8): 3902-3912, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26819312

RESUMO

UNLABELLED: Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-ß was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.


Assuntos
Produtos do Gene tax/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Produtos do Gene tax/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/virologia , NF-kappa B/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T/metabolismo , Linfócitos T/virologia
10.
J Virol ; 89(16): 8623-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063426

RESUMO

UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1)-associated diseases are poorly treatable, and HTLV-1 vaccines are not available. High proviral load is one major risk factor for disease development. HTLV-1 encodes Tax oncoprotein, which activates transcription from viral long terminal repeats (LTR) and various types of cellular promoters. Counteracting Tax function might have prophylactic and therapeutic benefits. In this work, we report on the suppression of Tax activation of HTLV-1 LTR by SIRT1 deacetylase. The transcriptional activity of Tax on the LTR was largely ablated when SIRT1 was overexpressed, but Tax activation of NF-κB was unaffected. On the contrary, the activation of the LTR by Tax was boosted when SIRT1 was depleted. Treatment of cells with resveratrol shunted Tax activity in a SIRT1-dependent manner. The activation of SIRT1 in HTLV-1-transformed T cells by resveratrol potently inhibited HTLV-1 proviral transcription and Tax expression, whereas compromising SIRT1 by specific inhibitors augmented HTLV-1 mRNA expression. The administration of resveratrol also decreased the production of cell-free HTLV-1 virions from MT2 cells and the transmission of HTLV-1 from MT2 cells to uninfected Jurkat cells in coculture. SIRT1 associated with Tax in HTLV-1-transformed T cells. Treatment with resveratrol prevented the interaction of Tax with CREB and the recruitment of CREB, CRTC1, and p300 to Tax-responsive elements in the LTR. Our work demonstrates the negative regulatory function of SIRT1 in Tax activation of HTLV-1 transcription. Small-molecule activators of SIRT1 such as resveratrol might be considered new prophylactic and therapeutic agents in HTLV-1-associated diseases. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) causes a highly lethal blood cancer or a chronic debilitating disease of the spinal cord. Treatments are unsatisfactory, and vaccines are not available. Disease progression is associated with robust expression of HTLV-1 genes. Suppressing HTLV-1 gene expression might have preventive and therapeutic benefits. It is therefore critical that host factors controlling HTLV-1 gene expression be identified and characterized. This work reveals a new host factor that suppresses HTLV-1 gene expression and a natural compound that activates this suppression. Our findings not only provide new knowledge of the host control of HTLV-1 gene expression but also suggest a new strategy of using natural compounds for prevention and treatment of HTLV-1-associated diseases.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Sirtuína 1/metabolismo , Imunoprecipitação da Cromatina , Células HEK293 , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Células Jurkat , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/antagonistas & inibidores , Estilbenos/farmacologia , Sequências Repetidas Terminais/genética , Vírion/efeitos dos fármacos
11.
Nucleic Acids Res ; 42(20): 12455-68, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300488

RESUMO

Transcription of hepatitis B virus (HBV) from the covalently closed circular DNA (cccDNA) template is essential for its replication. Suppressing the level and transcriptional activity of cccDNA might have anti-HBV effect. Although cellular transcription factors, such as CREB, which mediate HBV transcription, have been well described, transcriptional coactivators that facilitate this process are incompletely understood. In this study we showed that CREB-regulated transcriptional coactivator 1 (CRTC1) is required for HBV transcription and replication. The steady-state levels of CRTC1 protein were elevated in HBV-positive hepatoma cells and liver tissues. Ectopic expression of CRTC1 or its homolog CRTC2 or CRTC3 in hepatoma cells stimulated the activity of the preS2/S promoter of HBV, whereas overexpression of a dominant inactive form of CRTC1 inhibited HBV transcription. CRTC1 interacts with CREB and they are mutually required for the recruitment to the preS2/S promoter on cccDNA and for the activation of HBV transcription. Accumulation of pregenomic RNA (pgRNA) and cccDNA was observed when CRTC1 or its homologs were overexpressed, whereas the levels of pgRNA, cccDNA and secreted HBsAg were diminished when CRTC1 was compromised. In addition, HBV transactivator protein HBx stabilized CRTC1 and promoted its activity on HBV transcription. Our work reveals an essential role of CRTC1 coactivator in facilitating and supporting HBV transcription and replication.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Humanos , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias , Replicação Viral
12.
J Gen Virol ; 96(Pt 3): 626-636, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502645

RESUMO

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Edição de RNA/genética , RNA Viral/genética , Proteínas Associadas a CRISPR/genética , Regulação Viral da Expressão Gênica/fisiologia , Marcadores Genéticos , Células HEK293/classificação , Humanos , Vírus Reordenados , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias
13.
J Gen Virol ; 96(11): 3204-3211, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353965

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFkB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-ß, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-ß-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-ß-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFNstimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.


Assuntos
Interferon-alfa/genética , Interferon beta/genética , Interleucinas/genética , Febre por Flebótomos/genética , Phlebovirus/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Interferons , Interleucinas/metabolismo , Febre por Flebótomos/metabolismo , Febre por Flebótomos/virologia , Phlebovirus/genética , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética
14.
J Virol ; 88(9): 4866-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24522921

RESUMO

UNLABELLED: Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity. IMPORTANCE: Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing. This work not only provides a new understanding of the abilities of MERS-CoV and closely related bat viruses to subvert virus sensing but also might prove useful in revealing new strategies for the development of vaccines and antivirals.


Assuntos
Coronavirus/imunologia , RNA Helicases DEAD-box/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Interferons/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Evasão da Resposta Imune , Helicase IFIH1 Induzida por Interferon , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores Imunológicos
15.
mBio ; 15(4): e0039224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411085

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Assuntos
COVID-19 , SARS-CoV-2 , Transdução de Sinais , Proteínas não Estruturais Virais , Humanos , Antivirais , Calcineurina/metabolismo , Inibidores de Calcineurina/farmacologia , COVID-19/virologia , Ciclosporina/farmacologia , Fatores de Transcrição NFATC/metabolismo , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/metabolismo
16.
Int J Cancer ; 133(1): 79-87, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23280823

RESUMO

Latent infection with Epstein-Barr virus (EBV) is associated with several types of malignancies including nasopharyngeal carcinoma (NPC), which is particularly more prevalent in Southern China. EBV expresses at least 44 mature microRNAs (miRNAs) to modulate the activity of viral and cellular RNAs, but the targets of these EBV-encoded miRNAs in NPC are not well understood. In this report, we characterized DICE1 tumor suppressor to be a cellular target of EBV miR-BART3* miRNA. miR-BART3* was abundantly expressed in NPC cells. The target site of miR-BART3* located in the 3'-untranslated region of DICE1 transcript was identified and characterized. Enforced expression of miR-BART3* or its precursor pre-miR-BART3 led to down-regulation of endogenous DICE1 expression. Inhibition of endogenous miR-BART3* in NPC cells with anti-miR-BART3* oligonucleotide inhibitor resulted in increased expression of DICE1 protein. On the contrary, expression of miR-BART3* overcame the growth suppressive activity of DICE1 and stimulated cell proliferation. Consistent with its tumor suppressive function, DICE1 was underexpressed in EBV-expressing NPC tumor tissues. Taken together, our findings suggest that EBV encoded miR-BART3* miRNA targets DICE1 tumor suppressor to promote cellular growth and transformation in NPC.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Inativação Gênica , Herpesvirus Humano 4 , MicroRNAs/metabolismo , Neoplasias Nasofaríngeas/virologia , Proteínas Ribossômicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Carcinoma , China , Regulação para Baixo , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , Carcinoma Nasofaríngeo , Proteínas de Ligação a RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/genética , Proteínas Supressoras de Tumor/genética
17.
J Gen Virol ; 94(Pt 12): 2739-2744, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24045110

RESUMO

Epstein-Barr virus (EBV) encodes at least 44 mature microRNAs (miRNAs), some of which are abundantly expressed in nasopharyngeal carcinoma cells. EBV-encoded miR-BART6 miRNA is known to undergo adenosine-to-inosine (A-to-I) RNA editing, which impacts on processing and function. Whether additional EBV miRNAs might be A-to-I edited remains to be determined. In this study, we have reported on A-to-I editing of EBV miR-BART3. The A-to-I editing enzyme was expressed abundantly in EBV-infected epithelial carcinoma cells. pri-miR-BART3 was found to be edited at four sites in these cells and in nasopharyngeal carcinoma samples. Whereas editing of the second site located within the seed region prevented the targeting of DICE1 mRNA, editing of the third site effectively crippled the biogenesis of mature miR-BART3. Thus, A-to-I editing perturbs biogenesis and targeting of miR-BART3 and may contribute to its differential expression and function in EBV-infected epithelial cells.


Assuntos
Proteínas de Transporte/genética , Herpesvirus Humano 4/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Edição de RNA , Adenosina/genética , Adenosina/metabolismo , Sequência de Bases , Carcinoma , Proteínas de Transporte/metabolismo , Linhagem Celular , Infecções por Vírus Epstein-Barr/virologia , Células HEK293 , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/fisiologia , Humanos , Inosina/genética , Inosina/metabolismo , Dados de Sequência Molecular , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Fatores de Transcrição
18.
Cell Biosci ; 11(1): 215, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922626

RESUMO

In February 2020, we highlighted the top nine important research questions on SARS-CoV-2 and COVID-19 concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis. These and related questions are revisited at the end of 2021 to shed light on the roadmap of bringing an end to the pandemic.

19.
Clin Epigenetics ; 12(1): 150, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076962

RESUMO

BACKGROUND: miR-342-3p, localized to 14q32, is a tumor suppressor miRNA implicated in carcinogenesis. Given the presence of a promotor-associated CpG island for its host gene, EVL, we hypothesized that intronic miR-342-3p is a tumor suppressor co-regulated with host gene by promoter DNA methylation in B cell lymphoma. RESULTS: By bisulfite pyrosequencing-verified methylation-specific PCR (MSP), EVL/MIR342 methylation was detected in five (50%) lymphoma cell lines but not normal peripheral blood and tonsils. EVL/MIR342 methylation correlated with repression of both miR-342-3p and EVL in cell lines. In completely methylated SU-DHL-16 cells, 5-AzadC treatment resulted in promoter demethylation and re-expression of miR-342-3p and EVL. In 132 primary lymphoma samples, EVL/MIR342 was preferentially methylated in B cell lymphomas (N = 68; 68.7%) than T cell lymphoma (N = 8; 24.2%) by MSP (P < 0.0001). Moreover, EVL/MIR342 methylation was associated with lower miR-342-3p expression in 79 primary NHL (P = 0.0443). In SU-DHL-16 cells, the tumor suppressor function of miR-342-3p was demonstrated by the inhibition of cellular proliferation and increase of cell death upon over-expression of miR-342-3p. Mechanistically, overexpression of miR-342-3p resulted in a decrease of LC3-II, a biomarker of autophagy, which was pro-survival for SU-DHL-16. Pre-treatment with 3-methyladenine, an autophagy inhibitor, abrogated tumor suppression associated with miR-342-3p overexpression. By luciferase assay, MAP1LC3B, a precursor of LC3-II, was confirmed as a direct target of miR-342-3p. Finally, in SU-DHL-16 cells, overexpression of miR-342-3p downregulated the known target DNMT1, with promoter demethylation and re-expression of tumor suppressor E-cadherin. CONCLUSIONS: Intronic miR-342-3p is co-regulated with its host gene EVL by tumor-specific promoter DNA methylation in B cell lymphoma. The tumor suppressor function of miR-342-3p was mediated via inhibition of pro-survival autophagy by targeting MAP1LC3B and downregulation of DNMT1 with demethylation and re-expression of tumor suppressor genes.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Linfoma de Células B/genética , MicroRNAs/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/genética , Decitabina/farmacologia , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Feminino , Inativação Gênica , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Linfoma de Células B/tratamento farmacológico , Masculino , Proteínas Associadas aos Microtúbulos , Regiões Promotoras Genéticas/efeitos dos fármacos
20.
Cell Biosci ; 10: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190290

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. Here we highlight nine most important research questions concerning virus transmission, asymptomatic and presymptomatic virus shedding, diagnosis, treatment, vaccine development, origin of virus and viral pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA