Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 630(8016): 360-367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778109

RESUMO

Implanted biomaterials and devices face compromised functionality and efficacy in the long term owing to foreign body reactions and subsequent formation of fibrous capsules at the implant-tissue interfaces1-4. Here we demonstrate that an adhesive implant-tissue interface can mitigate fibrous capsule formation in diverse animal models, including rats, mice, humanized mice and pigs, by reducing the level of infiltration of inflammatory cells into the adhesive implant-tissue interface compared to the non-adhesive implant-tissue interface. Histological analysis shows that the adhesive implant-tissue interface does not form observable fibrous capsules on diverse organs, including the abdominal wall, colon, stomach, lung and heart, over 12 weeks in vivo. In vitro protein adsorption, multiplex Luminex assays, quantitative PCR, immunofluorescence analysis and RNA sequencing are additionally carried out to validate the hypothesis. We further demonstrate long-term bidirectional electrical communication enabled by implantable electrodes with an adhesive interface over 12 weeks in a rat model in vivo. These findings may offer a promising strategy for long-term anti-fibrotic implant-tissue interfaces.


Assuntos
Materiais Biocompatíveis , Fibrose , Reação a Corpo Estranho , Próteses e Implantes , Adesivos Teciduais , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Parede Abdominal , Adsorção , Materiais Biocompatíveis/química , Colo , Eletrodos Implantados , Fibrose/patologia , Fibrose/prevenção & controle , Reação a Corpo Estranho/prevenção & controle , Reação a Corpo Estranho/patologia , Coração , Pulmão , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Ratos Sprague-Dawley , Estômago , Suínos , Fatores de Tempo , Adesivos Teciduais/química , Imunofluorescência , Reprodutibilidade dos Testes , Análise de Sequência de RNA
2.
Nature ; 630(8016): 353-359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867127

RESUMO

Exoskeletons have enormous potential to improve human locomotive performance1-3. However, their development and broad dissemination are limited by the requirement for lengthy human tests and handcrafted control laws2. Here we show an experiment-free method to learn a versatile control policy in simulation. Our learning-in-simulation framework leverages dynamics-aware musculoskeletal and exoskeleton models and data-driven reinforcement learning to bridge the gap between simulation and reality without human experiments. The learned controller is deployed on a custom hip exoskeleton that automatically generates assistance across different activities with reduced metabolic rates by 24.3%, 13.1% and 15.4% for walking, running and stair climbing, respectively. Our framework may offer a generalizable and scalable strategy for the rapid development and widespread adoption of a variety of assistive robots for both able-bodied and mobility-impaired individuals.


Assuntos
Simulação por Computador , Exoesqueleto Energizado , Quadril , Robótica , Humanos , Exoesqueleto Energizado/provisão & distribuição , Exoesqueleto Energizado/tendências , Aprendizagem , Robótica/instrumentação , Robótica/métodos , Corrida , Caminhada , Pessoas com Deficiência , Tecnologia Assistiva/provisão & distribuição , Tecnologia Assistiva/tendências
3.
Nature ; 575(7781): 169-174, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666696

RESUMO

Two dry surfaces can instantly adhere upon contact with each other through intermolecular forces such as hydrogen bonds, electrostatic interactions and van der Waals interactions1,2. However, such instant adhesion is challenging when wet surfaces such as body tissues are involved, because water separates the molecules of the two surfaces, preventing interactions3,4. Although tissue adhesives have potential advantages over suturing or stapling5,6, existing liquid or hydrogel tissue adhesives suffer from several limitations: weak bonding, low biological compatibility, poor mechanical match with tissues, and slow adhesion formation5-13. Here we propose an alternative tissue adhesive in the form of a dry double-sided tape (DST) made from a combination of a biopolymer (gelatin or chitosan) and crosslinked poly(acrylic acid) grafted with N-hydrosuccinimide ester. The adhesion mechanism of this DST relies on the removal of interfacial water from the tissue surface, resulting in fast temporary crosslinking to the surface. Subsequent covalent crosslinking with amine groups on the tissue surface further improves the adhesion stability and strength of the DST. In vitro mouse, in vivo rat and ex vivo porcine models show that the DST can achieve strong adhesion between diverse wet dynamic tissues and engineering solids within five seconds. The DST may be useful as a tissue adhesive and sealant, and in adhering wearable and implantable devices to wet tissues.


Assuntos
Adesividade , Adesivos/química , Coração , Pulmão , Próteses e Implantes , Estômago , Molhabilidade , Resinas Acrílicas/química , Animais , Quitosana/química , Reagentes de Ligações Cruzadas/química , Dessecação , Gelatina/química , Coração/anatomia & histologia , Hidrogéis/química , Ligação de Hidrogênio , Pulmão/anatomia & histologia , Pulmão/química , Camundongos , Ratos , Eletricidade Estática , Estômago/anatomia & histologia , Estômago/química , Suínos , Fatores de Tempo , Água/análise , Água/química , Dispositivos Eletrônicos Vestíveis
4.
Nat Mater ; 22(7): 895-902, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37322141

RESUMO

Owing to the unique combination of electrical conductivity and tissue-like mechanical properties, conducting polymer hydrogels have emerged as a promising candidate for bioelectronic interfacing with biological systems. However, despite the recent advances, the development of hydrogels with both excellent electrical and mechanical properties in physiological environments is still challenging. Here we report a bi-continuous conducting polymer hydrogel that simultaneously achieves high electrical conductivity (over 11 S cm-1), stretchability (over 400%) and fracture toughness (over 3,300 J m-2) in physiological environments and is readily applicable to advanced fabrication methods including 3D printing. Enabled by these properties, we further demonstrate multi-material 3D printing of monolithic all-hydrogel bioelectronic interfaces for long-term electrophysiological recording and stimulation of various organs in rat models.


Assuntos
Hidrogéis , Polímeros , Animais , Ratos , Condutividade Elétrica , Impressão Tridimensional
5.
Nature ; 558(7709): 274-279, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899476

RESUMO

Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5-7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8-10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson's ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.

6.
Nat Chem Biol ; 17(6): 724-731, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33820990

RESUMO

Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.


Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/química
7.
Chem Rev ; 121(8): 4309-4372, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33844906

RESUMO

Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?


Assuntos
Hidrogéis/química , Polímeros/química , Animais , Sistemas de Liberação de Medicamentos , Humanos , Engenharia Tecidual
8.
Proc Natl Acad Sci U S A ; 117(27): 15497-15503, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576692

RESUMO

Bioadhesives such as tissue adhesives, hemostatic agents, and tissue sealants have potential advantages over sutures and staples for wound closure, hemostasis, and integration of implantable devices onto wet tissues. However, existing bioadhesives display several limitations including slow adhesion formation, weak bonding, low biocompatibility, poor mechanical match with tissues, and/or lack of triggerable benign detachment. Here, we report a bioadhesive that can form instant tough adhesion on various wet dynamic tissues and can be benignly detached from the adhered tissues on demand with a biocompatible triggering solution. The adhesion of the bioadhesive relies on the removal of interfacial water from the tissue surface, followed by physical and covalent cross-linking with the tissue surface. The triggerable detachment of the bioadhesive results from the cleavage of bioadhesive's cross-links with the tissue surface by the triggering solution. After it is adhered to wet tissues, the bioadhesive becomes a tough hydrogel with mechanical compliance and stretchability comparable with those of soft tissues. We validate in vivo biocompatibility of the bioadhesive and the triggering solution in a rat model and demonstrate potential applications of the bioadhesive with triggerable benign detachment in ex vivo porcine models.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Ferida Cirúrgica/terapia , Adesivos Teciduais/química , Adesividade , Animais , Reagentes de Ligações Cruzadas/química , Modelos Animais de Doenças , Feminino , Teste de Materiais , Ratos , Bicarbonato de Sódio/química , Soluções , Succinimidas/química , Suínos , Técnicas de Fechamento de Ferimentos/instrumentação
9.
Nat Mater ; 20(2): 229-236, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989277

RESUMO

Reliable functions of bioelectronic devices require conformal, stable and conductive interfaces with biological tissues. Integrating bioelectronic devices with tissues usually relies on physical attachment or surgical suturing; however, these methods face challenges such as non-conformal contact, unstable fixation, tissue damage, and/or scar formation. Here, we report an electrical bioadhesive (e-bioadhesive) interface, based on a thin layer of a graphene nanocomposite, that can provide rapid (adhesion formation within 5 s), robust (interfacial toughness >400 J m-2) and on-demand detachable integration of bioelectronic devices on diverse wet dynamic tissues. The electrical conductivity (>2.6 S m-1) of the e-bioadhesive interface further allows bidirectional bioelectronic communications. We demonstrate biocompatibility, applicability, mechanical and electrical stability, and recording and stimulation functionalities of the e-bioadhesive interface based on ex vivo porcine and in vivo rat models. These findings offer a promising strategy to improve tissue-device integration and enhance the performance of biointegrated electronic devices.


Assuntos
Adesivos , Técnicas Biossensoriais , Condutividade Elétrica , Hidrogéis , Adesivos/química , Adesivos/farmacologia , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Suínos
10.
Nanotechnology ; 31(26): 265604, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176869

RESUMO

Despite increasing interest in tin disulfide (SnS2) as a two-dimensional (2D) material due to its promising electrical and optical properties, the surface treatment of silicon dioxide (SiO2) substrates prior to the atomic layer deposition (ALD) deposition of SnS2 has not been thoroughly studied. In this paper, we prepared two types of SiO2 substrates with and without using an O2 plasma surface treatment and compared the ALD growth behavior of SnS2 on the SiO2 substrates. The hydrophilic properties of the two SiO2 substrates were investigated by x-ray photoelectron spectroscopy and contact angle measurements, which showed that using an O2 plasma surface treatment tuned the surface to be more hydrophilic. ALD-grown SnS2 thin films on the two different SiO2 substrates were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. To estimate the exact thickness of the ALD-grown SnS2 thin films, transmission electron microscopy was used. Our data revealed that using O2 plasma surface treatment increased the growth rate of the initial ALD stage. Thus, the ALD-grown SnS2 thin film on the SiO2 substrate treated with O2 plasma was thicker than the film grown on the non-treated SiO2 substrate.

11.
Nanotechnology ; 31(35): 355702, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32403092

RESUMO

Tin disulfide (SnS2) has emerged as a promising two-dimensional (2D) material due to its excellent electrical and optical properties. However, research into 2D SnS2 has mainly focused on its synthesis procedures and applications; its stability to humidity and temperature has yet to be studied. In this work, 2D SnS2 thin films were grown by atomic layer deposition (ALD) and characterized by various tools, such as x-ray diffraction, Raman analysis, and transmission electron spectroscopy. Characterization reveals that ALD-grown SnS2 thin films are a high-quality 2D material. After characterization, a four-inch-wafer-scale uniformity test was performed by Raman analysis. Owing to the quality, large-area growth enabled by the ALD process, 98.72% uniformity was obtained. Finally, we calculated the thermodynamic equations for possible reactions between SnS2 and H2O to theoretically presurmise the oxidation of SnS2 during accelerated humidity and temperature testing. After the accelerated humidity and temperature test, x-ray diffraction, Raman analysis, and Auger electron spectroscopy were performed to check whether SnS2 was oxidized or not. Our data revealed that 2D SnS2 thin films were stable at humid conditions.

12.
Proc Natl Acad Sci U S A ; 114(9): 2200-2205, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202725

RESUMO

Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.


Assuntos
Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais , Elastômeros/síntese química , Escherichia coli/química , Proteínas de Fluorescência Verde/genética , Hidrogéis/síntese química , Acil-Butirolactonas/análise , Acil-Butirolactonas/farmacologia , Transporte Biológico , Células Imobilizadas/metabolismo , Engenharia Química/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/análise , Isopropiltiogalactosídeo/farmacologia , Percepção de Quorum
13.
Chem Soc Rev ; 48(6): 1642-1667, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30474663

RESUMO

Bioelectronic interfacing with the human body including electrical stimulation and recording of neural activities is the basis of the rapidly growing field of neural science and engineering, diagnostics, therapy, and wearable and implantable devices. Owing to intrinsic dissimilarities between soft, wet, and living biological tissues and rigid, dry, and synthetic electronic systems, the development of more compatible, effective, and stable interfaces between these two different realms has been one of the most daunting challenges in science and technology. Recently, hydrogels have emerged as a promising material candidate for the next-generation bioelectronic interfaces, due to their similarities to biological tissues and versatility in electrical, mechanical, and biofunctional engineering. In this review, we discuss (i) the fundamental mechanisms of tissue-electrode interactions, (ii) hydrogels' unique advantages in bioelectrical interfacing with the human body, (iii) the recent progress in hydrogel developments for bioelectronics, and (iv) rational guidelines for the design of future hydrogel bioelectronics. Advances in hydrogel bioelectronics will usher unprecedented opportunities toward ever-close integration of biology and electronics, potentially blurring the boundary between humans and machines.

14.
Soft Matter ; 14(13): 2515-2525, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537019

RESUMO

Structures of thin films bonded on substrates have been used in technologies as diverse as flexible electronics, soft robotics, bio-inspired adhesives, thermal-barrier coatings, medical bandages, wearable devices and living devices. The current paradigm for maintaining adhesion of films on substrates is to make the films thinner, and more compliant and adhesive, but these requirements can compromise the function or fabrication of film-substrate structures. For example, there are limits on how thin, compliant and adhesive epidermal electronic devices can be fabricated and still function reliably. Here we report a new paradigm that enhances adhesion of films on substrates via designing rational kirigami cuts in the films without changing the thickness, rigidity or adhesiveness of the films. We find that the effective enhancement of adhesion by kirigami is due to (i) the shear-lag effect of the film segments; (ii) partial debonding at the film segments' edges; and (iii) compatibility of kirigami films with inhomogeneous deformation of substrates. While kirigami has been widely used to program thin sheets with desirable shapes and mechanical properties, fabricate electronics with enhanced stretchability and design the assembly of three-dimensional microstructures, this paper gives the first systematic study on kirigami enhancing film adhesion. We further demonstrate novel applications including a kirigami bandage, a kirigami heat pad and printed kirigami electronics.

15.
Nat Mater ; 15(2): 190-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26552058

RESUMO

In many animals, the bonding of tendon and cartilage to bone is extremely tough (for example, interfacial toughness ∼800 J m(-2); refs ,), yet such tough interfaces have not been achieved between synthetic hydrogels and non-porous surfaces of engineered solids. Here, we report a strategy to design tough transparent and conductive bonding of synthetic hydrogels containing 90% water to non-porous surfaces of diverse solids, including glass, silicon, ceramics, titanium and aluminium. The design strategy is to anchor the long-chain polymer networks of tough hydrogels covalently to non-porous solid surfaces, which can be achieved by the silanation of such surfaces. Compared with physical interactions, the chemical anchorage results in a higher intrinsic work of adhesion and in significant energy dissipation of bulk hydrogel during detachment, which lead to interfacial toughness values over 1,000 J m(-2). We also demonstrate applications of robust hydrogel-solid hybrids, including hydrogel superglues, mechanically protective hydrogel coatings, hydrogel joints for robotic structures and robust hydrogel-metal conductors.


Assuntos
Hidrogéis/química , Animais , Fenômenos Biomecânicos , Osso e Ossos , Cartilagem , Engenharia Química , Teste de Materiais , Propriedades de Superfície , Tendões
16.
Soft Matter ; 12(43): 8899-8906, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27731462

RESUMO

Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit various modes of mechanical instabilities. In cases where the layer's thickness is much smaller than its length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained elastic layer is comparable to or smaller than its width. In this case, the middle portion along the layer's thickness elongates nearly uniformly while the constrained fringe portions of the layer deform nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability. We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled setting the elastic fingering instability is associated with a snap-through buckling that does not exist for the fringe instability. The discovery of the fringe instability will not only advance the understanding of mechanical instabilities in soft materials but also have implications for biological and engineered adhesives and joints.

17.
Nat Commun ; 15(1): 1215, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331971

RESUMO

Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.


Assuntos
Adesivos Teciduais , Ratos , Animais , Adesivos Teciduais/química , Adesivos , Hidrogéis/química , Tecnologia
18.
Nat Commun ; 15(1): 2958, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627374

RESUMO

Marine animals equipped with sensors provide vital information for understanding their ecophysiology and collect oceanographic data on climate change and for resource management. Existing methods for attaching sensors to marine animals mostly rely on invasive physical anchors, suction cups, and rigid glues. These methods can suffer from limitations, particularly for adhering to soft fragile marine species such as squid and jellyfish, including slow complex operations, unreliable fixation, tissue trauma, and behavior changes of the animals. However, soft fragile marine species constitute a significant portion of ocean biomass (>38.3 teragrams of carbon) and global commercial fisheries. Here we introduce a soft hydrogel-based bioadhesive interface for marine sensors that can provide rapid (time <22 s), robust (interfacial toughness >160 J m-2), and non-invasive adhesion on various marine animals. Reliable and rapid adhesion enables large-scale, multi-animal sensor deployments to study biomechanics, collective behaviors, interspecific interactions, and concurrent multi-species activity. These findings provide a promising method to expand a burgeoning research field of marine bio-sensing from large marine mammals and fishes to small, soft, and fragile marine animals.


Assuntos
Cnidários , Ecossistema , Animais , Biomassa , Peixes/fisiologia , Oceanografia , Pesqueiros , Mamíferos
19.
Adv Mater ; 36(3): e2307288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865838

RESUMO

Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long-lasting interface. BioAdheSil, a silicone-based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue-infiltration-based long-term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long-lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long-term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines.


Assuntos
Adesivos , Silicones , Ratos , Animais , Teste de Materiais , Interações Hidrofóbicas e Hidrofílicas , Água/química
20.
Sci Transl Med ; 16(752): eado9003, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896601

RESUMO

Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.


Assuntos
Marca-Passo Artificial , Animais , Suínos , Ratos , Monitorização Fisiológica/métodos , Ratos Sprague-Dawley , Eletrodos Implantados , Adesivos , Impressão Tridimensional , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA