Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 146(22): 15515-15524, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785086

RESUMO

The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.

2.
Small ; 19(40): e2302338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267930

RESUMO

Electrochemical synthesis of hydrogen peroxide (H2 O2 ) through the selective oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone method, while its success relies largely on the development of efficient electrocatalyst. Currently, carbon-based materials (CMs) are the most widely studied electrocatalysts for electrosynthesis of H2 O2 via ORR due to their low cost, earth abundance, and tunable catalytic properties. To achieve a high 2e- ORR selectivity, great progress is made in promoting the performance of carbon-based electrocatalysts and unveiling their underlying catalytic mechanisms. Here, a comprehensive review in the field is presented by summarizing the recent advances in CMs for H2 O2 production, focusing on the design, fabrication, and mechanism investigations over the catalytic active moieties, where an enhancement effect of defect engineering or heteroatom doping on H2 O2 selectivity is discussed thoroughly. Particularly, the influence of functional groups on CMs for a 2e- -pathway is highlighted. Further, for commercial perspectives, the significance of reactor design for decentralized H2 O2 production is emphasized, bridging the gap between intrinsic catalytic properties and apparent productivity in electrochemical devices. Finally, major challenges and opportunities for the practical electrosynthesis of H2 O2 and future research directions are proposed.

3.
Small ; 18(4): e2103530, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766456

RESUMO

Herein, it is shown that by engineering defects on Cex Si1- x O2- δ nanocomposites synthesized via flame spray pyrolysis, oxygen vacancies can be created with an increased density of trapped electrons, enhancing the formation of reactive oxygen species (ROSs) and hydroxyl radicals in an ozone-filled environment. Spectroscopic analysis and density functional theory calculations indicate that two-electron oxygen vacancies (OV 0 ) or peroxide species, and their degree of clustering, play a critical role in forming reactive radicals. It is also found that a higher Si content in the binary oxide imposes a high OV 0 ratio and, consequently, higher catalytic activity. Si inclusion in the nanocomposite appears to stabilize the surface oxygen vacancies as well as increase the reactive electron density at these sites. A mechanistic study on effective ROSs generated during catalytic ozonation reveals that the hydroxyl radical is the most effective ROS for organic degradation and is formed primarily through H2 O2 generation in the presence of the OV 0 . Examining the binary oxides offers insights on the contribution of oxygen vacancies and their state of charge to catalytic reactions, in this instance for the catalytic ozonation of organic compounds.

4.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894267

RESUMO

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

5.
Environ Sci Technol ; 54(18): 11356-11364, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32794698

RESUMO

Photoluminescent metal-organic frameworks (MOFs) were grown in a living plant (Syngonium podophyllum) via immersing their roots in an aqueous solution of disodium terephthalate and terbium chloride hexahydrate sequentially for 12 h without affecting their viability. Then, app-assisted living MOF-plant nanobiohybrids were used for the detection of various toxic metal ions and organic pollutants. Their performance and sensing mechanism were also evaluated. The results demonstrated that the living plants served as self-powered preconcentrators via their passive fluid transport systems and accumulated the pollutants around the embedded MOFs, resulting in relative changes in fluorescence intensity. Therefore, the living MOF-plant nanobiohybrids initiate superior selectivity and sensitivity (0.05-0.5 µM) in water for Ag+, Cd2+, and aniline with a "turn-up" fluorescence response and for Fe3+ and Cu2+ with "turn-down" fluorescence response in the linear range of 0.05-10 µM with excellent precision and accuracy of 5 and 10%, respectively. With the easy-to-read visual signals under ultraviolet light, the app translates plant luminescent signals into digital information on a smartphone for on-site monitoring of environmental pollutants with high sensitivity and specificity. These results suggest that interfacing synthetic and living materials may contribute to the development of smart sensors for on-site environmental pollutant sensing with high accuracy.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Íons , Plantas , Espectrometria de Fluorescência
6.
ACS Sens ; 9(4): 1735-1742, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572917

RESUMO

Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine. The designed sensor has a detection range for CO2 between 103 and 106 ppm even at high humidity levels (>80% RH), and it is capable of differentiating ammonia at low concentrations (0.1-5 ppm) from CO2. The addition of diethylamine improved sensor performance such as selectivity, response/recovery time, and long-term stability. These data demonstrate the potential of using this sensor for the detection of food spoilage.


Assuntos
Dióxido de Carbono , Dióxido de Carbono/análise , Umidade , Acrilamidas/química , Polímeros/química , Metacrilatos/química , Gases/análise
7.
Adv Mater ; 36(9): e2310690, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048484

RESUMO

Designing robust bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction in all-pH conditions for overall water splitting (OWS) is an effective way to achieve sustainable development. Herein, a composite Ru-VO2 containing Ru-doped VO2 and Ru nanoparticles (NPs) is synthesized, and it shows a high OWS performance in full-pH range due to their synergist effect. In particular, the OER mass activities of Ru-VO2 at 1.53 V (vs RHE) in acidic, alkaline, and PBS solutions are ≈65, 36, and 235 times of commercial RuO2 in the same conditions. The "Ru-VO2 || Ru-VO2 " two-electrode electrolyzer only needs a voltage of 1.515 V (at 10 mA cm-2 ) in acidic water splitting, which can operate stably for 125 h at 10 mA cm-2 without significant voltage decay. In situ Raman spectra and in situ differential electrochemical mass spectrometry prove that the OER of Ru-VO2 in acid follows the adsorption evolution mechanism. Density functional theory calculations further reveal the synergistic effect between Ru NP and Ru-doped VO2 , which breaks the hydrogen bond network formed by *OH adsorbed on the Ru single-atom site, and thereby significantly enhances the OER activity. This work provides new insights into the design of novel bifunctional pH-universal catalysts for OWS.

8.
ACS Appl Mater Interfaces ; 15(28): 34181-34194, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37402131

RESUMO

In this study, multilayered NiMo/CoMn/Ni cathodic electrodes were prepared by the multilayered electrodeposition method. The multilayered structure includes a nickel screen substrate, CoMn nanoparticles at the bottom, and cauliflower-like NiMo nanoparticles at the top. The multilayered electrodes have a lower overpotential, preferable stability, and better electrocatalytic performance than monolayer electrodes. In a three-electrode system, the overpotentials of the multilayered NiMo/CoMn/Ni cathodic electrodes at 10 and 500 mA/cm2 are only 28.7 and 259.1 mV, respectively. The overpotential rise rate of the electrodes after constant current tests at 200 and 500 mA/cm2 was 4.42 and 8.74 mV/h, respectively, and the overpotential rise rate after 1000 cycles of cyclic voltammetry of the electrodes was 1.9 mV/h, while the overpotential rise rate after the three stability tests of the nickel screen was 5.49, 11.42, and 5.1 mV/h. According to the Tafel extrapolation polarization curve, the Ecorr and Icorr of the electrodes were -0.3267 V and 1.954 × 10-5 A/cm2, respectively. The charge transfer rate of the electrodes is slightly slower than that of the monolayer electrodes, indicating that its corrosion resistance is more excellent. An electrolytic cell was designed for the overall water-splitting test, and the current density of the electrodes was 121.6 mA/cm2 at 1.8 V. In addition, the stability of the electrodes is excellent after intermittent testing for 50 h, which can greatly reduce power consumption and is more suitable for industrial overall water-splitting tests. In addition, the three-dimensional model was used to simulate the three-electrode system and alkaline water electrolytic cell system, and the simulation results are consistent with the experimental results. The hydrogen adsorption free energy (ΔGH) of the electrodes was -1.0191 eV, which was evaluated by density functional theory (DFT). The ΔGH is closer to zero than that of the monolayer electrodes, indicating that the surface has stronger adsorption of hydrogen atoms.

9.
Adv Mater ; 35(31): e2210235, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37219533

RESUMO

Water harvesting using the metal-organic framework (MOF)-801 is restricted by limited working capacity, powder structuring, and finite stability. To overcome these issues, MOF-801 is crystallized on the surface of macroporous poly(N-isopropylacrylamide-glycidyl methacrylate) spheres, called P(NIPAM-GMA), through an in situ confined growth strategy, forming spherical MOF-801@P(NIPAM-GMA) composite with temperature-responsive function. By lowering the nucleation energy barrier, the average size of the MOF-801 crystals decreases by 20 times. Thus, abundant defects as adsorption sites for water can be installed in the crystals lattices. As a consequence, the composite provides an unprecedented high water harvesting efficiency. The composite is produced in the kilogram-scale and can capture 1.60 kg H2 O/kg composite/day from 20% relative humidity between 25 and 85 °C. This study provides an effective methodology for improving the adsorption capacity through controlled defects formation as adsorption sites and to improve the kinetics through the design of a composite with macroporous transport channel network.

10.
ACS Omega ; 7(26): 22232-22243, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811921

RESUMO

Amine-functionalized polymers (AFPs) are able to react with carbon dioxide (CO2) and are therefore useful in CO2 capture and sensing. To develop AFP-based CO2 sensors, it is critical to examine their electrical responses to CO2 over long periods of time, so that the device can be used consistently for measuring CO2 concentration. To this end, we synthesized poly(N-[3-(dimethylamino)propyl] methacrylamide) (pDMAPMAm) by free radical polymerization and tested its ability to behave as a CO2-responsive polymer in a transducer. The electrical response of this polymer to CO2 upon long exposure times was measured in both the aqueous and solid phases. Direct current resistance measurement tests on pDMAPMAm films printed along with the silver electrodes in the presence of CO2 at various concentrations reveal a two-region electrical response. Upon continuous exposure to different CO2 flow rates (at a constant pressure of 0.2 MPa), the resistance first decreased over time, reaching a minimum, followed by a gradual increase with further exposure to CO2. A similar trend is observed when CO2 is introduced to an aqueous solution of pDMAPMAm. The in situ monitoring of pH suggests that the change in resistance of pDMAPMAm can be attributed to the protonation of tertiary amine groups in the presence of CO2. This two-region response of pDMAPMAm is based on a proton-hopping mechanism and a change in the number of free amines when pDMAPMAm is exposed to various levels of CO2.

11.
Langmuir ; 27(2): 843-50, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21171579

RESUMO

A facile method of stabilizing magnetic iron oxide nanoparticles (MNPs) in biological media (RPMI-1640) via surface modification with fetal bovine serum (FBS) is presented herein. Dynamic light scattering (DLS) shows that the size of the MNP aggregates can be maintained at 190 ± 2 nm for up to 16 h in an RPMI 1640 culture medium containing ≥4 vol % FBS. Under transmission electron microscopy (TEM), a layer of protein coating is observed to cover the MNP surface following treatment with FBS. The adsorption of proteins is further confirmed by X-ray photoelectron spectroscopy (XPS). Gel electrophoresis and LC-MS/MS studies reveal that complement factor H, antithrombin, complement factor I, α-1-antiproteinase, and apolipoprotein E are the proteins most strongly attached to the surface of an MNP. These surface-adsorbed proteins serve as a linker that aids the adsorption of other serum proteins, such as albumin, which otherwise adsorb poorly onto MNPs. The size stability of FBS-treated MNPs in biological media is attributed to the secondary adsorbed proteins, and the size stability in biological media can be maintained only when both the surface-adsorbed proteins and the secondary adsorbed proteins are present on the particle's surface.


Assuntos
Meios de Cultura/química , Compostos Férricos/química , Sangue Fetal/química , Magnetismo , Nanopartículas/química , Animais , Bovinos , Tamanho da Partícula , Propriedades de Superfície
12.
RSC Adv ; 11(4): 2040-2046, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424171

RESUMO

In this study, monodispersed NiRu nanocrystals with a diameter of 3 nm were synthesized at 90 °C via a tuning hot-inject method to lower the temperature of the organic phase synthesis of monodispersed nanomaterials. The key factor for the nanocrystalline formation of NiRu alloy nanocrystals was summarized in detail. Simultaneously, the synergistic effect of Ni and Ru in CO2 methanation was explored. Doping trace Ru can significantly improve the conversion rate of CO2 methanation and CH4 selectivity. The underlying mechanism was studied in detail via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed hydrogen reduction (H2-TPR) and desorption (H2-TPD) tests, and temperature-programmed desorption of CO2 (CO2-TPD). This study gives out a new way for the general synthesis of monodisperse nickel-based nanocrystals and provides a reference for the development and application of monodispersed nanoparticles for CO2 methanation.

13.
Chemosphere ; 274: 129769, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33548638

RESUMO

Bisphenol A (BPA), a typical endocrine disrupting chemical, widely exists in water and threatens human health. The degradation of BPA by ozone in water is limited by the gas-mass transfer due to the low solubility of ozone. In this study, a rotating packed bed (RPB) was employed to create a high gravity environment to intensify the ozone mass transfer and BPA degradation. The effects of operational parameters (rotation speed of RPB, pH of the solution, ozone concentration, BPA concentration, gas volumetric flow rate and liquid volumetric flow rate) on BPA degradation efficiency and overall volumetric mass transfer coefficient of ozone were investigated. The results show that RPB effectively promoted the ozone mass transfer and BPA degradation and can be used for the ozonation of micropollutants that have fast reaction rates with ozone. Quenching experiments suggest that both ozone and HO∙ participated in BPA degradation from acidic to alkaline environments. In addition, the effects of co-existing chemicals on BPA degradation efficiency were studied. The addition of H2O2 or Cl- had no obvious impact on BPA degradation; the addition of HCO3- is beneficial for BPA degradation while the addition of fulvic acid suppressed the degradation. These results indicate that the pH value, which affects the reaction rate between ozone and BPA, is a major factor to be considered during the ozonation of BPA in RPB.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Compostos Benzidrílicos , Humanos , Peróxido de Hidrogênio , Fenóis , Poluentes Químicos da Água/análise
14.
ACS Appl Mater Interfaces ; 13(18): 21775-21785, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33908751

RESUMO

We present a kilogram-scale experiment for assessing the prospects of a novel composite material of metal-organic framework (MOF) and polyacrylates (PA), namely NbOFFIVE-1-Ni@PA, for trace CO2 capture. Through the interfacial enrichment of metal ions and organic ligands as well as heterogeneous crystallization, the sizes of microporous NbOFFIVE-1-Ni crystals are downsized to 200-400 nm and uniformly anchored on the macroporous surface of PA via interfacial coordination, forming a unique dual-framework structure. Specifically, the NbOFFIVE-1-Ni@PA composite with a loading of 45.8 wt % NbOFFIVE-1-Ni yields a superior CO2 uptake (ca. 1.44 mol·kg-1) compared to the pristine NbOFFIVE-1-Ni (ca. 1.30 mol·kg-1) at 400 ppm and 298 K, indicating that the adsorption efficiency of NbOFFIVE-1-Ni has been raised by 2.42 times. Meanwhile, the time cost for realizing a complete adsorption/desorption cycle in a fluidized bed has been shortened to 25 min, and the working capacity (ca. 0.84 mol·kg-1) declines only by 1.3% after 2000 cycles. The device is capable of harvesting 2.1 kg of CO2 per kilogram of composite daily from simulated air with 50% relatively humidity (RH). To the best of our knowledge, the excellent adsorption/desorption performances of NbOFFIVE-1-Ni@PA position it as the most advantageous and practically applicable candidate for trace CO2 capture.

15.
ACS Omega ; 6(39): 25506-25517, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632208

RESUMO

Phenol is a nocuous water pollutant that threatens human health and the ecological environment. CoOx-doped micron-sized hollow MgO rods were prepared for the treatment of phenol wastewater by catalytic ozonation. Magnesium sources, precipitants, initial precursor concentration, Co/Mg molar ratio, and catalyst calcination temperature were optimized to obtain the best catalysts. Prepared catalysts were also well characterized by various methods to analyze their structure and physical and chemical properties. In this process, CoOx/MgO with the largest large surface area (151.3 m3/g) showed the best catalytic performance (100 and 79.8% of phenol and chemical oxygen demand (COD) removal ratio, respectively). The hydrolysis of CoOx/MgO plays a positive role in the degradation of phenol. The catalytic mechanism of the degradation of O3 to free radicals over catalysts has been investigated by in situ electronic paramagnetic resonance (EPR). The catalyst can be reused at least five times without any activity decline. The prepared CoOx/MgO catalyst also showed excellent catalytic performance for removal and degradation of ciprofloxacin, norfloxacin, and salicylic acid.

16.
RSC Adv ; 9(58): 34065-34075, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528902

RESUMO

Molybdovanadylphosphoric acid (HPMV) was supported on a carbon nitride-modified SBA-15 (CN-SBA-15) molecular sieve to enhance its catalytic performance for oxidation of methacrolein (MAL) to methacrylic acid (MAA). HPMV/CN-SBA exhibited increased catalytic activity (20%) and five times greater MAA selectivity (98.9%) compared to bulk HPMV. HPMV supported on CN-SBA-15 exhibited much better catalytic performance as compared to that on other supports, such as KIT-6, HY zeolite, TiO2, Al2O3, SiO2, CNTs, and NH3-modified CNTs. The supported HPMV was well characterized by FT-IR, XRD, SEM, N2 physical desorption, TG-DTA, NH3-TPD, CO2-TPD, XPS, and solid-state NMR. The CN minimized the interaction between the silica support and HPMV. HPMV was successfully separated from SBA-15, which was restricted by CN to increase stability and prevent interaction between the catalysts and support that would lead to decomposition of the catalysts during calcination and reaction. HPMV reacted with amino groups on the CN, which improved MAA selectivity and enhanced the thermal stability of the supported heteropoly acid (HPA) catalysts. This work identifies a new approach to preparing highly efficient and stable supported HPA catalysts for oxidation reactions.

17.
Carbohydr Polym ; 212: 289-296, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30832859

RESUMO

Degradation of cellulose to reducing sugar is the key step for the conversion of cellulose to valuable chemicals. Cellulose was degraded by WCl6 in 1-butyl-3-methyl imidazole chloride at 80 °C and lower. 83% and 85.5% yield of total reducing sugar was gotten at 70 and 80 °C, respectively. Compared with inorganic acid, heteropoly acid, acidic ionic liquid and other metal chlorides, WCl6 has shown better catalytic performance for degradation of cellulose to reducing sugar. The effect of reaction temperature, reaction time, WCl6 amount and cellulose concentration were investigated. Degradation of cellulose by WCl6 in 1-butyl-3-methyl imidazole chloride is a zero reaction. WCl6 also showed excellent catalytic performance for the degradation of nature cellulose and lignocellulose. Catalyst can be reused at least 5 times without decrease of reducing sugar yield. The mechanism of degradation of WCl6 was also suggested.

18.
J Pharm Sci ; 97(2): 944-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17722000

RESUMO

Reactive high gravity controlled precipitation (HGCP) was carried out to produce salbutamol sulphate (SS) particles suitable for inhalation. Aqueous solutions of free salbutamol base and sulphuric acid were mixed intensely inside a HGCP reactor to form the particles. Spray drying was employed to obtain dry powders. Physical properties of the powders were characterised by scanning electron microscopy, X-ray powder diffraction, thermal gravimetric analysis and dynamic water vapour sorption. Aerosol performance of the powders was measured using an Aeroliser connected to a multiple stage liquid impinger operating at 60 L/min. The results showed that the reactive HGCP powder, comprising primary SS sub-micron particles (approximately 100 nm in width and approximately 500 nm in length) packed into loose spherical agglomerates of about 2 microm in diameter, is of the same polymorphic form as the raw crystalline material, has a high specific surface area (24.7 +/- 0.1 m(2)/g), but a low moisture content (0.2%) and low moisture uptake (1.4% at RH 90%). The aerosol performance of the reactive HGCP powder is excellent, showing FPF(loaded) and FPF(emitted) of 76 +/- 5% and 83 +/- 7%, respectively, with low capsule and device retention. In conclusion, reactive HGCP followed by spray drying is suitable to produce stable crystalline powders of salbutamol with enhanced inhalation properties.


Assuntos
Albuterol/administração & dosagem , Hipergravidade , Administração por Inalação , Aerossóis , Albuterol/química , Precipitação Química , Umidade , Tamanho da Partícula , Difração de Raios X
19.
Int J Pharm ; 360(1-2): 58-64, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18502064

RESUMO

Ultrafine gemfibrozil (GEM) was prepared by reactive precipitation process in which methyl cellulose (MC) was employed to inhibit the growth and the agglomeration of particles. The impact of NaOH concentrations on bulk GEM consumption was explored. The effects of H2SO4 concentrations and the drying methods on the particle size and morphology were also discussed. The produced ultrafine powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, specific surface area analysis and dissolution test. XRD patterns and FT-IR spectra showed that the as-obtained ultrafine GEM was a crystalline powder with the structure and components similar to those of bulk GEM. The ultrafine GEM had a mean particle size of about 1.25 microm with a narrow distribution from 0.6 to 3 microm. The specific surface area reached up to 11.01 m2/g, which was about 6 times as large as that of bulk GEM. In the dissolution tests, about 91.2% of ultrafine GEM was dissolved after 120 min, while there was only 23.6% of bulk GEM dissolved, proving that the dissolution property of ultrafine GEM was significantly enhanced when compared to commercial GEM owing to a decreased particle size and an increased specific surface area.


Assuntos
Genfibrozila/administração & dosagem , Genfibrozila/química , Hipolipemiantes/administração & dosagem , Hipolipemiantes/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Dessecação , Excipientes , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pós , Hidróxido de Sódio/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Sulfúricos/química , Difração de Raios X
20.
Int J Pharm ; 342(1-2): 26-32, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17566675

RESUMO

Prednisolone (PDL) microcrystals were successfully prepared by a controlled microprecipitation method. The characterization of PDL microcrystals by SEM and PSD indicated that the hexagonal and tetragonal PDL microcrystals with an average particle size of 1.60 and 1.46 microm could be prepared under a stirring speed of 10,000 rpm at 14 and 4 degrees C, respectively. The morphology and the particle size of PDL could be well controlled, from 1.60 to 6.12 microm for hexagonal microcrystals and 1.46 to 3.90 microm for tetragonal ones, by altering the operating parameters such as temperature, stirring speed and stabilizers. The XRD, TGA-DSC, FT-IR and physical stability studies demonstrated that the as-prepared hexagonal and tetragonal PDL microcrystals with the same pseudopolymorphic form were much more stable in water than the commercial micronized PDL with another crystal form. The dissolution tests showed that the hexagonal and tetragonal PDL microcrystals exhibited significantly enhanced dissolution property when compared to commercial micronized PDL.


Assuntos
Anti-Inflamatórios/química , Prednisolona/química , Varredura Diferencial de Calorimetria , Precipitação Química , Química Farmacêutica , Cristalização , Estabilidade de Medicamentos , Microquímica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Solventes , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Temperatura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA