Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Anal Bioanal Chem ; 415(8): 1515-1527, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705733

RESUMO

Aroma represents an important quality aspect for wine. The aroma of different grapes and wines is formed by the varying composition and concentrations of numerous aroma compounds, which result in different sensory impressions. The analysis of aroma compounds is usually complex and time-consuming, which requires the development of rapid alternative methods. In this study, grape mash samples were examined for aroma compounds, which were released under tasting conditions. A selection of the determined aroma compounds was grouped according to their sensory characteristics and calibration models were developed for the determination of sensory attributes by near-infrared (NIR) spectroscopy. The calibration models for the selected sensory attributes "fruity," "green," "floral" and "microbiological" showed very high prediction accuracies (0.979 < R2C < 0.996). Moreover, four different grape model solutions, whose compositions were based on the results from GC-MS-based analysis of the grape mash samples, were examined in a sensory evaluation. Despite large variation of the single values, the averaged values of the given scores for intensity of odour and taste showed differences between the model solutions for most of the evaluated sensory attributes. Sensory analysis remains essential for the evaluation of the overall aroma; however, NIR spectroscopy can be used as an additional and more objective method for the estimation of possible desired or undesired flavour nuances of grape mash and the quality of the resulting wine.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vitis/química , Odorantes/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vinho/análise , Paladar , Compostos Orgânicos Voláteis/análise
2.
Plant Cell Environ ; 44(3): 870-884, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251628

RESUMO

Stomatal movements are enabled by changes in guard cell turgor facilitated via transient accumulation of inorganic and organic ions imported from the apoplast or biosynthesized within guard cells. Under salinity, excess salt ions accumulate within plant tissues resulting in osmotic and ionic stress. To elucidate whether (a) Na+ and Cl- concentrations increase in guard cells in response to long-term NaCl exposure and how (b) guard cell metabolism acclimates to the anticipated stress, we profiled the ions and primary metabolites of leaves, the apoplast and isolated guard cells at darkness and during light, that is, closed and fully opened stomata. In contrast to leaves, the primary metabolism of guard cell preparations remained predominantly unaffected by increased salt ion concentrations. Orchestrated reductions of stomatal aperture and guard cell osmolyte synthesis were found, but unlike in leaves, no increases of stress responsive metabolites or compatible solutes occurred. Diverging regulation of guard cell metabolism might be a prerequisite to facilitate the constant adjustment of turgor that affects aperture. Moreover, the photoperiod-dependent sucrose accumulation in the apoplast and guard cells changed to a permanently replete condition under NaCl, indicating that stress-related photosynthate accumulation in leaves contributes to the permanent closing response of stomata under stress.


Assuntos
Estômatos de Plantas/citologia , Aclimatação , Cloretos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Estresse Salino , Sódio/metabolismo , Vicia faba/metabolismo , Vicia faba/fisiologia
3.
J Exp Bot ; 72(7): 2686-2695, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33345268

RESUMO

The chloride component of NaCl salinity causes the leaf apoplast to transiently alkalinize. This transition in pH reduces stomatal aperture. However, whether this apoplastic pH (pHapo) transient initiates stomatal closure by interacting with other chloride stress-induced responses or whether the pH transient alone initiates stomatal closure is unknown. To clarify the problem, the transient alkalinization of the leaf apoplast was mimicked in intact maize (Zea mays L.) by infiltrating near-neutral pH buffers into the leaf apoplast. Effects of the pHapo transient could thus be investigated independently from other chloride stress-derived effects. Microscopy-based ratiometric live pHapo imaging was used to monitor pHapoin planta. LC-MS/MS and real-time quantitative reverse transcription-PCR leaf analyses showed that the artificially induced pHapo transient led to an increase in the concentrations of the stomata-regulating plant hormone abscisic acid (ABA) and in transcripts of the key ABA-synthesizing gene ZmVp14 in the leaf. Since stomatal aperture and stomatal conductance decreased according to pHapo, we conclude that the pHapo transient alone initiates stomatal closure. Therefore, the functionality does not depend on interactions with other compounds induced by chloride stress. Overall, our data indicate that the pH of the leaf apoplast links chloride salinity with the control of stomatal aperture via effects exerted on the transcription of ABA.


Assuntos
Ácido Abscísico , Zea mays , Cromatografia Líquida , Folhas de Planta , Estômatos de Plantas , Espectrometria de Massas em Tandem , Zea mays/genética
4.
Plant Cell Environ ; 43(12): 2932-2956, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32744336

RESUMO

Salinization of land is likely to increase due to climate change with impact on agricultural production. Since most species used as crops are sensitive to salinity, improvement of salt tolerance is needed to maintain global food production. This review summarises successes and failures of transgenic approaches in improving salt tolerance in crop species. A conceptual model of coordinated physiological mechanisms in roots and shoots required for salt tolerance is presented. Transgenic plants overexpressing genes of key proteins contributing to Na+ 'exclusion' (PM-ATPases with SOS1 antiporter, and HKT1 transporter) and Na+ compartmentation in vacuoles (V-H+ ATPase and V-H+ PPase with NHX antiporter), as well as two proteins potentially involved in alleviating water deficit during salt stress (aquaporins and dehydrins), were evaluated. Of the 51 transformations, with gene(s) involved in Na+ 'exclusion' or Na+ vacuolar compartmentation that contained quantitative data on growth and include a non-saline control, 48 showed improvements in salt tolerance (less impact on plant mass) of transgenic plants, but with only two tested in field conditions. Of these 51 transformations, 26 involved crop species. Tissue ion concentrations were altered, but not always in the same way. Although glasshouse data are promising, field studies are required to assess crop salinity tolerance.


Assuntos
Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Plantas Tolerantes a Sal/genética , Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia
5.
Plant Cell Environ ; 42(1): 295-309, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29940081

RESUMO

Salt-affected farmlands are increasingly burdened by chlorides, carbonates, and sulfates of sodium, calcium, and magnesium. Intriguingly, the underlying physiological processes are studied almost always under NaCl stress. Two faba bean cultivars were subjected to low- and high-salt treatments of NaCl, Na2 SO4 , and KCl. Assimilation rate and leaf water vapor conductance were reduced to approximately 25-30% without biomass reduction after 7 days salt stress, but this did not cause severe carbon shortage. The equimolar treatments of Na+ , K+ , and Cl- showed comparable accumulation patterns in leaves and roots, except for SO42- which did not accumulate. To gain a detailed understanding of the effects caused by the tested ion combinations, we performed nontargeted gas chromatography-mass spectrometry-based metabolite profiling. Metabolic responses to various salts were in part highly linearly correlated, but only a few metabolite responses were common to all salts and in both cultivars. At high salt concentrations, only myo-inositol, allantoin, and glycerophosphoglycerol were highly significantly increased in roots under all tested conditions. We discovered several metabolic responses that were preferentially associated with the presence of Na+ , K+ , or Cl- . For example, increases of leaf proline and decreases of leaf fumaric acid and malic acid were apparently associated with Cl- accumulation.


Assuntos
Estresse Salino , Vicia faba/metabolismo , Cloretos/metabolismo , Metaboloma/fisiologia , Pressão Osmótica , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Potássio/metabolismo , Estresse Salino/fisiologia , Sódio/metabolismo , Vicia faba/fisiologia , Água/metabolismo
6.
Glob Chang Biol ; 24(1): e40-e54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715112

RESUMO

A 2-year Free Air CO2 Enrichment (FACE) experiment was conducted with winter wheat. It was investigated whether elevated atmospheric CO2 concentration (e[CO2 ]) inhibit nitrate assimilation and whether better growth and nitrogen acquisition under e[CO2 ] can be achieved with an ammonium-based fertilization as it was observed in hydroponic culture with wheat. Under e[CO2 ] a decrease in nitrate assimilation has been discussed as the cause for observed declines in protein concentration in C3 cereals. Wheat was grown under ambient [CO2 ] and e[CO2 ] (600 ppm) with three levels (deficiency, optimal, and excessive) of nitrate-based fertilization (calcium ammonium nitrate; CAN) or with optimal ammonium-based fertilization. Ammonium fertilization was applied via injection of an ammonium solution into the soil in the 1st year and by surface application of urea combined with nitrification inhibitors (UNI) in the 2nd year. Results showed that ammonium-based fertilization was successfully achieved in the 2nd year with respect to nitrification control, as soil ammonium concentration was considerably higher over the growing season for UNI fertilized plots compared to optimal CAN plots. Also, stem nitrate concentration, flag leaf nitrate reductase activity, and transcript levels were lower in UNI fertilized plants compared to optimal CAN. Regarding the e[CO2 ] effect on nitrate reductase activity and transcript levels, no alteration could be observed for any nitrogen fertilizer treatment. Flag leaf growth was stimulated under e[CO2 ] leading to an enhanced nitrate reductase activity referred to m2 ground area at late flowering being in line with a higher nitrogen acquisition under e[CO2 ]. Moreover, nitrogen acquisition was considerably higher in nitrate fertilized plants compared to ammonium fertilized plants under e[CO2 ]. Our results obtained under field conditions show that a change from nitrate- to ammonium-based fertilization will not lead to a better growth and nitrogen acquisition of winter wheat under future e[CO2 ].


Assuntos
Compostos de Amônio/administração & dosagem , Dióxido de Carbono/administração & dosagem , Nitratos/administração & dosagem , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/administração & dosagem , Triticum/fisiologia , Compostos de Amônio/metabolismo , Dióxido de Carbono/metabolismo , Fertilizantes , Nitratos/metabolismo , Óxidos de Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
7.
Proc Natl Acad Sci U S A ; 112(13): 4164-9, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775562

RESUMO

Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense.


Assuntos
Crotalaria/metabolismo , Nodulação , Alcaloides de Pirrolizidina/metabolismo , Rhizobium/fisiologia , Alquil e Aril Transferases/metabolismo , Crotalaria/microbiologia , DNA Complementar/metabolismo , Nitrogênio/química , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Simbiose
8.
Ann Bot ; 119(6): 965-976, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28110268

RESUMO

Background and Aims: Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to salinity combined with hypoxia were investigated on a physiological and metabolic level. Methods: To compare the adaptive mechanisms to deficient, optimal and stressful salt concentrations, S. maritima plants were grown in a hydroponic culture under low, medium and high salt concentrations. Additionally, hypoxic conditions were applied to investigate the impact of hypoxia combined with different salt concentrations. A non-targeted metabolic approach was used to clarify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms of S. maritima . Key Results: Roots exposed to hypoxic conditions showed an increased level of tricarboxylic acid (TCA)-cycle intermediates such as succinate, malate and citrate. During hypoxia, the concentration of free amino acids increased in shoots and roots. Osmoprotectants such as proline and glycine betaine increased in concentrations as the external salinity was increased under hypoxic conditions. Conclusions: The combination of high salinity and hypoxia caused an ionic imbalance and an increase of metabolites associated with osmotic stress and photorespiration, indicating a severe physiological and metabolic response under these conditions. Disturbed proline degradation in the roots induced an enhanced proline accumulation under hypoxia. The enhanced alanine fermentation combined with a partial flux of the TCA cycle might contribute to the tolerance of S. maritima to hypoxic conditions.


Assuntos
Chenopodiaceae/fisiologia , Salinidade , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/farmacologia , Adaptação Fisiológica , Anaerobiose , Relação Dose-Resposta a Droga
9.
J Biol Chem ; 290(18): 11235-45, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25750129

RESUMO

The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays ß-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Proteínas de Plantas/química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
10.
New Phytol ; 208(3): 803-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096890

RESUMO

Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.


Assuntos
Ácido Abscísico/metabolismo , Cloretos/metabolismo , Estômatos de Plantas/fisiologia , Salinidade , Vicia faba/fisiologia , Concentração de Íons de Hidrogênio , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo , Estresse Fisiológico
11.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38366928

RESUMO

Monitoring of bioinoculants once released into the field remains largely unexplored; thus, more information is required about their survival and interactions after root colonization. Therefore, specific primers were used to perform a long-term tracking to elucidate the effect of Hartmannibacter diazotrophicus on wheat and barley production at two experimental organic agriculture field stations. Three factors were evaluated: organic fertilizer application (with and without), row spacing (15 and 50 cm), and bacterial inoculation (H. diazotrophicus and control without bacteria). Hartmannibacter diazotrophicus was detected by quantitative polymerase chain reaction on the roots (up to 5 × 105 copies g-1 dry weight) until advanced developmental stages under field conditions during two seasons, and mostly in one farm. Correlation analysis showed a significant effect of H. diazotrophicus copy numbers on the yield parameters straw yield (increase of 453 kg ha-1 in wheat compared to the mean) and crude grain protein concentration (increase of 0.30% in wheat and 0.80% in barley compared to the mean). Our findings showed an apparently constant presence of H. diazotrophicus on both wheat and barley roots until 273 and 119 days after seeding, respectively, and its addition and concentration in the roots are associated with higher yields in one crop.


Assuntos
Agricultura , Alphaproteobacteria , Hordeum , Estações do Ano , Triticum/microbiologia , Bactérias
12.
Proteomics ; 13(12-13): 1885-900, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23723162

RESUMO

Salinity is a major threat limiting the productivity of crop plants. A clear demand for improving the salinity tolerance of the major crop plants is imposed by the rapidly growing world population. This review summarizes the achievements of proteomic studies to elucidate the response mechanisms of selected model and crop plants to cope with salinity stress. We also aim at identifying research areas, which deserve increased attention in future proteome studies, as a prerequisite to identify novel targets for breeding strategies. Such areas include the impact of plant-microbial communities on the salinity tolerance of crops under field conditions, the importance of hormone signaling in abiotic stress tolerance, and the significance of control mechanisms underlying the observed changes in the proteome patterns. We briefly highlight the impact of novel tools for future proteome studies and argue for the use of integrated approaches. The evaluation of genetic resources by means of novel automated phenotyping facilities will have a large impact on the application of proteomics especially in combination with metabolomics or transcriptomics.


Assuntos
Produtos Agrícolas , Proteínas de Plantas , Proteômica , Tolerância ao Sal
13.
J Agric Food Chem ; 71(27): 10228-10237, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37384408

RESUMO

Mineral nutrients spatiotemporally participate in the biosynthesis and accumulation of storage biopolymers, which directly determines the harvested grain yield and quality. Optimizing fertilizer nutrient availability improves the grain yield, but quality aspects are often underestimated. We hypothesize that extensive mineral nutrients have significant effects on the biosynthesis, content, and composition of storage proteins, ultimately determining physicochemical properties and food quality, particularly in the context of climate change. To investigate this, we hierarchized 16 plant mineral nutrients and developed a novel climate-nutrient-crop model to address the fundamental question of the roles of protein and starch in grain-based food quality. Finally, we recommend increasing the added value of mineral nutrients as a socioeconomic strategy to enhance agro-food profitability, promote environmental sustainability, and improve climate resilience.


Assuntos
Grão Comestível , Nutrientes , Grão Comestível/química , Qualidade dos Alimentos , Minerais/análise
14.
Front Plant Sci ; 14: 1050079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235021

RESUMO

The role of recovery after drought has been proposed to play a more prominent role during the whole drought-adaption process than previously thought. Two maize hybrids with comparable growth but contrasting physiological responses were investigated using physiological, metabolic, and lipidomic tools to understand the plants' strategies of lipid remodeling in response to repeated drought stimuli. Profound differences in adaptation between hybrids were discovered during the recovery phase, which likely gave rise to different degrees of lipid adaptability to the subsequent drought event. These differences in adaptability are visible in galactolipid metabolism and fatty acid saturation patterns during recovery and may lead to a membrane dysregulation in the sensitive maize hybrid. Moreover, the more drought-tolerant hybrid displays more changes of metabolite and lipid abundance with a higher number of differences within individual lipids, despite a lower physiological response, while the responses in the sensitive hybrid are higher in magnitude but lower in significance on the level of individual lipids and metabolites. This study suggests that lipid remodeling during recovery plays a key role in the drought response of plants.

15.
Ann Bot ; 109(5): 1027-36, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22316572

RESUMO

BACKGROUND AND AIMS: Phenotypic plasticity, the potential of specific traits of a genotype to respond to different environmental conditions, is an important adaptive mechanism for minimizing potentially adverse effects of environmental fluctuations in space and time. Suaeda maritima shows morphologically different forms on high and low areas of the same salt marsh. Our aims were to examine whether these phenotypic differences occurred as a result of plastic responses to the environment. Soil redox state, indicative of oxygen supply, was examined as a factor causing the observed morphological and physiological differences. METHODS: Reciprocal transplantation of seedlings was carried out between high and low marsh sites on a salt marsh and in simulated tidal-flow tanks in a glasshouse. Plants from the same seed source were grown in aerated or hypoxic solution, and roots were assayed for lactate dehydrogenase (LDH) and alcohol dehydrogenase, and changes in their proteome. KEY RESULTS: Transplanted (away) seedlings and those that remained in their home position developed the morphology characteristic of the home or away site. Shoot Na(+), Cl(-) and K(+) concentrations were significantly different in plants in the high and low marsh sites, but with no significant difference between home and away plants at each site. High LDH activity in roots of plants grown in aeration and in hypoxia indicated pre-adaptation to fluctuating root aeration and could be a factor in the phenotypic plasticity and growth of S. maritima over the full tidal range of the salt marsh environment. Twenty-six proteins were upregulated under hypoxic conditions. CONCLUSIONS: Plasticity of morphological traits for growth form at extremes of the soil oxygenation spectrum of the tidal salt marsh did not correlate with the lack of physiological plasticity in the constitutively high LDH found in the roots.


Assuntos
Adaptação Fisiológica/fisiologia , Chenopodiaceae/fisiologia , L-Lactato Desidrogenase/metabolismo , Cloreto de Sódio/farmacologia , Biomassa , Hipóxia Celular/fisiologia , Chenopodiaceae/efeitos dos fármacos , Chenopodiaceae/crescimento & desenvolvimento , Meio Ambiente , Genótipo , Oxirredução , Oxigênio/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Proteômica , Plantas Tolerantes a Sal , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Solo , Áreas Alagadas
16.
Plants (Basel) ; 11(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890441

RESUMO

Downy mildew is, globally, one of the most significant diseases in viticulture. Control of this pathogen is achieved through fungicide application. However, due to restrictions (from upcoming regulations) and growing environmental conscientiousness, it is critical to continuously enhance forecasting models to reduce fungicide application. Infection potential has traditionally been based on a 50 h-degree calculation (temperature multiplied by leaf wetness duration) measured by weather stations; the main climatic parameters for forecast modelling are temperature, relative humidity, and leaf wetness. This study took these parameters measured by a weather station and compared them with the same parameters measured inside a grape canopy. The study showed that the temperature readings by the weather station compared to inside the canopy recorded differences during the day but not at night; the relative humidity showed significant differences during both daytime and night; leaf wetness showed the highest differences and was statistically significant during both daytime and night. In conclusion, the measurement differences between inside of the canopy and at the weather station have significant impacts on the precision of forecasting models. Thus, using data from inside of a canopy for the prediction should lead to even less fungicide applications.

17.
Plant Physiol Biochem ; 159: 67-79, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341081

RESUMO

Drought has become a major stress for agricultural productivity in temperate regions, such as central Europe. Thus, information on how crop plants respond to drought is important to develop tolerant hybrids and to ensure yield stability. Posttranscriptional regulation through changed protein abundances is an important mechanism of short-term response to stress events that has not yet been widely exploited in breeding strategies. Here, we investigated the response to repeated drought exposure of a tolerant and a sensitive maize hybrid in order to understand general protein abundance changes induced by singular drought or repeated drought events. In general, drought affected protein abundance of multiple pathways in the plant. We identified starch metabolism, aquaporin abundance, PSII proteins and histones as strongly associated with typical drought-induced phenotypes such as increased membrane leakage, osmolality or effects on stomatal conductance and assimilation rate. In addition, we found a strong effect of drought on nutrient assimilation, especially the sulfur metabolism. In general, pre-experience of mild drought before exposure to a more severe drought resulted in visible adaptations resulting in dampened phenotypes as well as lower magnitude of protein abundance changes.


Assuntos
Secas , Proteoma , Estresse Fisiológico , Zea mays , Genótipo , Melhoramento Vegetal , Proteoma/genética , Proteômica , Estresse Fisiológico/genética , Zea mays/genética
18.
J Plant Physiol ; 267: 153545, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736005

RESUMO

The combined occurrence of salt stress and hypoxia leads to increased growth reduction and severe toxic effects compared to salt stress alone. In the present work, we analyzed the metabolic response of sugar beet (Beta vulgaris L.) to salt stress combined with hypoxia in roots as well as in young and mature leaves. B. vulgaris plants were grown in a hydroponic culture under low and high salt concentrations combined with normoxic and hypoxic conditions. A non-targeted metabolic approach was used to identify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms. Young and mature leaves showed a similar metabolic response to salt stress alone and combined stresses, accumulating sugar compounds. Osmoprotectants such as proline and pinitol were accumulated under combined stress. Roots exposed to hypoxic conditions showed increased TCA (tricarboxylic acid cycle) intermediates levels such as succinate, fumarate and malate. During hypoxia, the concentration of free amino acids as well as intermediates of the GABA (gamma-aminobutyric acid) shunt increased in roots as well as in leaves. The combination of salt stress and hypoxia results in a severe stress response in roots and leaves. A partial flux of the TCA cycle linked with the GABA shunt might be activated during hypoxia to regain reduction equivalents.


Assuntos
Beta vulgaris , Hipóxia , Raízes de Plantas/fisiologia , Salinidade , Estresse Fisiológico , Beta vulgaris/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Açúcares , Ácido gama-Aminobutírico
19.
Proteomics ; 10(24): 4441-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21136597

RESUMO

It is of fundamental importance to understand adaptation processes leading to salt resistance. The initial effects on maize roots in the first hour after the adjustment to saline conditions were monitored to elucidate initial responses. The subsequent proteome change was monitored using a 2-D proteomic approach. We found several new salt-inducible proteins, whose expression has not been previously reported to be modulated by salt. A set of phosphoproteins in maize was detected but only ten proteins were phosphorylated and six proteins were dephosphorylated after the application of 25 mM NaCl for 1 h. Some of the phosphorylated maize proteins such as fructokinase, UDP-glucosyl transferase BX9, and 2-Cys-peroxyredoxine were enhanced, whereas an isocitrate-dehydrogenase, calmodulin, maturase, and a 40-S-ribosomal protein were dephosphorylated after adjustment to saline conditions. The initial reaction of the proteome and phosphoproteome of maize after adjustment to saline conditions reveals members of sugar signalling and cell signalling pathways such as calmodulin, and gave hint to a transduction chain which is involved in NaCl-induced signalling. An alteration of 14-3-3 proteins as detected may change plasma membrane ATPase activity and cell wall growth regulators such as xyloglucane endotransglycosylase were also found to be changed immediately after the adjustment to salt stress.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Zea mays/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Tolerância ao Sal , Transdução de Sinais , Estresse Fisiológico
20.
Plant Physiol Biochem ; 155: 161-168, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32758997

RESUMO

Maize has to avoid excess tissue accumulation of Cl- to withstand conditions of Cl--salinity. Restriction of loading of Cl- into the root xylem is one mechanism to keep shoot Cl--concentrations low. The proportion of Cl- that reaches the shoot has to be stored away from the primary site of photosynthesis and growth. We tested whether or not maize is able to re-translocate significant amounts of Cl- from shoot back to root and out into the rooting media. Ion analysis revealed that maize cannot re-translocate Cl-; however, it is stored in sheaths of the old leaves and, surprisingly, in roots. Sequestration of Cl- in the roots might be a strategy to keep concentrations low in young growing shoot tissues and in leaf blades where photosynthesis is running.


Assuntos
Cloretos/metabolismo , Raízes de Plantas/fisiologia , Salinidade , Zea mays/fisiologia , Brotos de Planta/fisiologia , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA