RESUMO
Manual wheelchair users (MWUs) are prone to a sedentary life that can negatively affect their physical and cardiovascular health, making regular assessment important to identify appropriate interventions and lifestyle modifications. One mean of assessing MWUs' physical health is the 6 min push test (6MPT), where the user propels themselves as far as they can in six minutes. However, reliance on observer input introduces subjectivity, while limited quantitative data inhibit comprehensive assessment. Incorporating sensors into the 6MPT can address these limitations. Here, ten MWUs performed the 6MPT with additional sensors: two inertial measurement units (IMUs)-one on the wheelchair and one on the wrist together with a heart rate wristwatch. The conventional measurements of distance and laps were recorded by the observer, and the IMU data were used to calculate laps, distance, speed, and cadence. The results demonstrated that the IMU can provide the metrics of the traditional 6MPT with strong significant correlations between calculated laps and observer lap counts (r = 0.947, p < 0.001) and distances (r = 0.970, p < 0.001). Moreover, heart rate during the final minute was significantly correlated with calculated distance (r = 0.762, p = 0.017). Enhanced 6MPT assessment can provide objective, quantitative, and comprehensive data for clinicians to effectively inform interventions in rehabilitation.
Assuntos
Frequência Cardíaca , Cadeiras de Rodas , Humanos , Frequência Cardíaca/fisiologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Teste de Esforço/métodos , Aptidão Cardiorrespiratória/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos VestíveisRESUMO
INTRODUCTION: The goal of testosterone replacement is to provide long-term physiological supplementation at sufficient levels to mitigate the symptoms of hypogonadism. AIM: The objective of this work is to determine if the implantable nanochannel delivery system (nDS) can present an alternative delivery strategy for the long-term sustained and constant release of testosterone. METHODS: A formulation of common testosterone esters (F1) was developed to enable nanochannel delivery of the low water soluble hormone. In vivo evaluation of testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels by liquid chromatography/mass spectrometry and a multiplex assay, respectively, in castrated Sprague-Dawley rats implanted with nDS-F1 implants or polymeric pellets was performed over a 6-month period. The percent of testosterone concentrations observed that fell within the normal range of testosterone levels for each animal was calculated and used to compare the study groups. MAIN OUTCOME MEASURES: Sustain release of testosterone in vivo for over 6 months. RESULTS: The subcutaneous release of F1 from nDS implants exhibited sustained in vivo release kinetics and attained stable clinically relevant plasma testosterone levels. Plasma LH and FSH levels were significantly diminished in nDS-F1 implant-treated animals, confirming biological activity of the released testosterone. CONCLUSIONS: In conclusion, we demonstrate that nDS-F1 implants represents a novel approach for the treatment of male hypogonadism. Further studies will be performed in view of translating the technology to clinical use.
Assuntos
Implantes de Medicamento/farmacologia , Hipogonadismo/tratamento farmacológico , Testosterona/farmacologia , Animais , Hormônio Foliculoestimulante/sangue , Hipogonadismo/patologia , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Testosterona/sangueRESUMO
Novel drug delivery systems capable of continuous sustained release of therapeutics have been studied extensively for use in the prevention and management of chronic diseases. The use of these systems holds promise as a means to achieve higher patient compliance while improving therapeutic index and reducing systemic toxicity. In this work, an implantable nanochannel drug delivery system (nDS) is characterized and evaluated for the long-term sustained release of atorvastatin (ATS) and trans-resveratrol (t-RES), compounds with a proven role in managing atherogenic dyslipidemia and promoting cardioprotection. The primary mediators of drug release in the nDS are nanofluidic membranes with hundreds of thousands of nanochannels (up to 100,000/mm(2)) that attain zero-order release kinetics by exploiting nanoconfinement and molecule-to-surface interactions that dominate diffusive transport at the nanoscale. These membranes were characterized using gas flow analysis, acetone diffusion, and scanning and transmission electron microscopy (SEM, TEM). The surface properties of the dielectric materials lining the nanochannels, SiO(2) and low-stress silicon nitride, were further investigated using surface charge analysis. Continuous, sustained in vitro release for both ATS and t-RES was established for durations exceeding 1 month. Finally, the influence of the membranes on cell viability was assessed using human microvascular endothelial cells. Morphology changes and adhesion to the surface were analyzed using SEM, while an MTT proliferation assay was used to determine the cell viability. The nanochannel delivery approach, here demonstrated in vitro, not only possesses all requirements for large-scale high-yield industrial fabrication, but also presents the key components for a rapid clinical translation as an implantable delivery system for the sustained administration of cardioprotectants.
Assuntos
Anticolesterolemiantes/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Implantes de Medicamento/química , Ácidos Heptanoicos/administração & dosagem , Membranas Artificiais , Pirróis/administração & dosagem , Estilbenos/administração & dosagem , Vasodilatadores/administração & dosagem , Atorvastatina , Linhagem Celular , Sobrevivência Celular , Difusão , Desenho de Equipamento , Humanos , Nanoestruturas/química , ResveratrolRESUMO
The lack of a viable theory for describing diffusivity when fluids are confined at the micro- and nanoscale [Ladero et al. Chem. Eng. Sci.2007, 62, 666-678; Deen AIChE J.1987, 33, 1409-1425] has necessitated accurate measurement of diffusivity (D) [Jin and Chen Chromatographia2000, 52, 17-21; Nie et al. Science1994, 266, 1018-1021; Durand et al. Anal. Chem.2009, 81, 5407-5412], crucial for a host of micro- and nanofluidic technologies [Grattoni et al. Curr. Pharm. Biotechnol.2010, 11, 343-365]. We demonstrate a rapid and agile method for the direct measurement of diffusivity in a system possessing 10(4) to 10(5) precisely fabricated channels with characteristic sizes (ß) ranging from micro- to nanometers. Custom chambers allowed us to measure the diffusivity in a closed unperturbed system using UV/vis spectroscopy. D was measured for rhodamine B (RhoB) in aqueous solution in channels of 200 and 1 µm, as well as 13 and 5.7 nm. The observed logarithmic scaling of diffusivity with ß, in close agreement with prior experiments, but far from theoretical prediction, surprisingly highlights that diffusivity is significantly altered even at the microscale. Accurate measurement of D by reducing the size of the source reservoir by 3 orders of magnitude (from 150 µL to 910 nL) proves that a substantial reduction in measurement time (from 7 days to 40 min) can be achieved. Our design thus is ready for rapid translation into a standard analytical tool--useful for multiple applications.
Assuntos
Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Rodaminas/análise , Difusão , Desenho de Equipamento , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Ionic transport through nanofluidic systems is a problem of fundamental interest in transport physics and has broad relevance in desalination, fuel cells, batteries, filtration, and drug delivery. When the dimension of the fluidic system approaches the size of molecules in solution, fluid properties are not homogeneous and a departure in behavior is observed with respect to continuum-based theories. Here we present a systematic study of the transport of charged and neutral small molecules in an ideal nanofluidic platform with precise channels from the sub-microscale to the ultra-nanoscale (<5 nm). Surprisingly, we find that diffusive transport of nano-confined neutral molecules matches that of charged molecules, as though the former carry an effective charge. Further, approaching the ultra-nanoscale molecular diffusivities suddenly drop by up to an order of magnitude for all molecules, irrespective of their electric charge. New theoretical investigations will be required to shed light onto these intriguing results.
Assuntos
Hidrodinâmica , Íons/química , Nanoestruturas/química , Nanotecnologia/métodos , Reologia/métodos , Difusão , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-ß-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC. 1:2 TES:HPCD complex stably achieve 10-15 times higher testosterone solubility with 25-30 times higher in vitro release. Bioactivity of delivered testosterone is verified by LNCaP/LUC cell luminescence. In vivo evaluation of testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels by liquid chromatography mass spectrometry (LC/MS) and multiplex assay is performed in castrated Sprague-Dawley rats over 30 d. Animals are treated with the nanochannel implants or degradable testosterone pellets. The 1:2 TES:HPCD nanochannel implant exhibits sustained and clinically relevant in vivo release kinetics and attains physiologically stable plasma levels of testosterone, LH, and FSH. In conclusion, it is demonstrated that by providing long-term steady release 1:2 TES:HPCD nanochannel implants may represent a major breakthrough for the treatment of male hypogonadism.
Assuntos
Implantes de Medicamento/administração & dosagem , Nanoestruturas/administração & dosagem , Testosterona/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Sistemas de Liberação de Medicamentos , Implantes de Medicamento/farmacologia , Hormônio Foliculoestimulante/sangue , Cinética , Medições Luminescentes , Hormônio Luteinizante/sangue , Masculino , Nanoestruturas/química , Orquiectomia , Ratos Sprague-Dawley , Testosterona/sangue , beta-Ciclodextrinas/químicaRESUMO
Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 h, sustaining their constant plasma level for many days is a challenge. To address this, we develop, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib-loaded liposomes, and we demonstrate the release of intact vesicles for over 18 d. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos/química , Nanotecnologia/métodos , Animais , CamundongosRESUMO
Combined use of gemcitabine (Gem) and LY-364947 (LY), a TGF-ß1 receptor inhibitor, has shown promise for the treatment of fibrotic pancreatic cancer, by reducing collagen production and improving tumor drug penetration. The preparation and optimization of novel Gem and LY formulations, including co-encapsulation in liposomes, require a validated method for the simultaneous quantification of both drugs, a method that had yet to be developed. Here we demonstrate an RP-HPLC protocol for the simultaneous detection of Gem and LY at 266 and 228 nm with retention times of 3.37 and 11.34 mins, respectively. The method, which uses a C18 column and a KH2PO4 (10 mM)-methanol mobile phase, was validated for linearity, precision, accuracy, limits of detection, and robustness. Co-loaded liposomes with both Gem and LY (Gem/LY liposomes) were developed to investigate the protocol applicability to pharmacokinetic analysis and formulation characterization. The method specificity was evaluated in presence of liposomal components in fetal bovine serum (FBS). Finally, the method was demonstrated by quantifying Gem/LY liposomal encapsulation efficiency and concentration liposomes-spiked FBS.
Assuntos
Antineoplásicos/análise , Cromatografia Líquida de Alta Pressão/métodos , Desoxicitidina/análogos & derivados , Lipossomos , Pirazóis/análise , Pirróis/análise , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica , Bovinos , Química Farmacêutica , Desoxicitidina/administração & dosagem , Desoxicitidina/análise , Desoxicitidina/farmacocinética , Estabilidade de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Pirróis/administração & dosagem , Pirróis/farmacocinética , GencitabinaRESUMO
Despite the clinical success of pancreatic islet transplantation, graft function is frequently lost over time due to islet dispersion, lack of neovascularization, and loss of physiological architecture. To address these problems, islet encapsulation strategies including scaffolds and devices have been developed, which produced encouraging results in preclinical models. However, islet loss from such architectures could represent a significant limitation to clinical use. Here, we developed and characterized a novel islet encapsulation silicon device, the NanoGland, to overcome islet loss, while providing a physiological-like environment for long-term islet viability and revascularization. NanoGlands, microfabricated with a channel size ranging from 3.6 nm to 60 µm, were mathematically modeled to predict the kinetics of the response of encapsulated islets to glucose stimuli, based on different channel sizes, and to rationally select membranes for further testing. The model was validated in vitro using static and perifusion testing, during which insulin secretion and functionality were demonstrated for over 30-days. In vitro testing also showed 70-83% enhanced islet retention as compared to porous scaffolds, here simulated through a 200 µm channel membrane. Finally, evidence of in vivo viability of human islets subcutaneously transplanted within NanoGlands was shown in mice for over 120 days. In this context, mouse endothelial cell infiltration suggesting neovascularization from the host were identified in the retrieved grafts. The NanoGland represents a novel, promising approach for the autotransplantation of human islets.
Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/citologia , Nanoestruturas/química , Nanotecnologia/instrumentação , Animais , Movimento Celular , Difusão , Células Endoteliais , Glucose/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Modelos Teóricos , Neovascularização Fisiológica , Silício/química , Transplante HeterólogoRESUMO
Drug delivery is essential to achieve effective therapy. Herein we report on the only implantable nanochannel membrane with geometrically defined channels as small as 2.5 nm that achieves constant drug delivery in vivo. Nanochannels passively control the release of molecules by physico-electrostatic confinement, thereby leading to constant drug diffusion. We utilize a novel design algorithm to select the optimal nanochannel size for each therapeutic agent. Using nanochannels as small as 3.6 and 20 nm, we achieve sustained and constant plasma levels of leuprolide, interferon α-2b, letrozole, Y-27632, octreotide, and human growth hormone, all delivered at clinically-relevant doses. The device was demonstrated in dogs, rats, and mice and was capable of sustaining target doses for up to 70 days. To provide evidence of therapeutic efficacy, we successfully combined nanochannel delivery with a RhoA pathway inhibitor to prevent chronic rejection of cardiac allografts in a rat model. Our results provide evidence that the nanochannel platform has the potential to dramatically improve long-term therapies for chronic conditions.
Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Nanoestruturas/ultraestrutura , Preparações Farmacêuticas/administração & dosagem , Animais , Cães , Desenho de Equipamento , Feminino , Humanos , Masculino , Membranas Artificiais , Camundongos , Nanoestruturas/química , Próteses e Implantes , Ratos , Ratos Sprague-DawleyRESUMO
Recent work has elucidated the potential of important new therapeutic paradigms, including metronomic delivery and chronotherapy, in which the precise timing and location of therapeutic administration has a significant impact on efficacy and toxicity. New drug delivery architectures are needed to not only release drug continuously at precise rates, but also synchronize their release with circadian cycles. We present an actively controlled nanofluidic membrane that exploits electrophoresis to control the magnitude, duration, and timing of drug release. The membrane, produced using high precision silicon fabrication techniques, has platinum electrodes integrated at the inlet and outlet that allow both amplification and reversal of analyte delivery with low applied voltage (at or below 2 VDC). Device operation was demonstrated with solutions of both fluorescein isothiocyanate conjugated bovine serum albumin and lysozyme using fluorescence spectroscopy, fluorescence microscopy, and a lysozyme specific bio-assay and has been characterized for long-term molecular release and release reversibility. Through a combination of theoretical and experimental analysis, the relative contributions of electrophoresis and electroosmosis have been investigated. The membrane's clinically relevant electrophoretic release rate at 2 VDC exceeds the passive release by nearly one order of magnitude, demonstrating the potential to realize the therapeutic paradigm goal.
Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Animais , Bovinos , Eletroforese/instrumentação , Eletroforese/métodos , Microscopia de Fluorescência/métodos , Muramidase/química , Muramidase/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologiaRESUMO
Nanoparticles and their derivatives have engendered significant recent interest. Despite considerable advances in nanofluidic physics, control over nanoparticle diffusive transport, requisite for a host of innovative applications, has yet to be demonstrated. In this study, we performed diffusion experiments for negatively and positively charged fullerene derivatives (dendritic fullerene-1, DF-1, and amino fullerene, AC60) in 5.7 and 13 nm silicon nanochannels in solutions with different ionic strengths. With DF-1, we demonstrated a gated diffusion whereby precise and reproducible control of the dynamics of the release profile was achieved by tuning the gradient of the ionic strength within the nanochannels. With AC60, we observed a near-surface diffusive transport that produced release rates that were independent of the size of the nanochannels within the range of our experiments. Finally, through theoretical analysis we were able to elucidate the relative importance of physical nanoconfinement, electrostatic interactions, and ionic strength heterogeneity with respect to these gated and near-surface diffusive transport phenomena. These results are significant for multiple applications, including the controlled administration of targeted nanovectors for therapeutics.