Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Diagn Pathol ; 40(1): 63-68, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35729019

RESUMO

Metastasis may be the secret weapon cancer uses to dominate and subjugate, to persist and prevail. However, it is no longer a secret when we realize that a stem cell has the same ways and means to fulfill its own omnipotence and accomplish its own omnipresence… and when we realize that a cancer cell has its own version of stem-ness origin and stem-like nature. In this perspective, we discuss whether stem-ness enables metastasis or mutations drive metastasis. We ponder about low-grade versus high-grade tumors and about primary versus metastatic tumors. We wonder about stochasticity and hierarchy in the genesis and evolution of cancer and of metastasis. We postulate that metastasis may hold the elusive code that makes or breaks a stem-cell versus a genetic theory of cancer. We speculate that the vaunted model of multistep carcinogenesis may be in error and needs some belated remodeling and a major overhaul. We propose that subsequent malignant neoplasms from germ cell tumors and donor-derived malignancies in organ transplants are quintessential experiments of nature and by man that may eventually empower us to elucidate a stem-cell origin of cancer and metastasis. Unfortunately, even the best experiments of cancer and of metastasis will be left unfinished, overlooked, or forgotten, when we do not formulate a proper cancer theory derived from pertinent and illuminating clinical observations. Ultimately, there should be no consternations when we realize that metastasis has a stem-cell rather than a genetic origin, and no reservations when we recognize that metastasis has been providing us some of the most enduring tests and endearing proofs to demonstrate that cancer is indeed a stem-cell rather than a genetic disease after all.


Assuntos
Neoplasias , Masculino , Humanos , Neoplasias/patologia , Células-Tronco/patologia , Mutação , Metástase Neoplásica/patologia
2.
Proc Natl Acad Sci U S A ; 117(36): 22378-22389, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839325

RESUMO

Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) is a noninvasive metabolic-imaging modality that probes carbon flux in tissues and infers the state of metabolic reprograming in tumors. Prevailing models attribute elevated hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in aggressive tumors to enhanced glycolytic flux and lactate dehydrogenase A (LDHA) activity (Warburg effect). By contrast, we find by cross-sectional analysis using genetic and pharmacological tools in mechanistic studies applied to well-defined genetically engineered cell lines and tumors that initial hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates as well as global conversion were highly dependent on and critically rate-limited by the transmembrane influx of [1-13C]pyruvate mediated predominately by monocarboxylate transporter-1 (MCT1). Specifically, in a cell-encapsulated alginate bead model, induced short hairpin (shRNA) knockdown or overexpression of MCT1 quantitatively inhibited or enhanced, respectively, unidirectional pyruvate influxes and [1-13C]pyruvate-to-[1-13C]lactate conversion rates, independent of glycolysis or LDHA activity. Similarly, in tumor models in vivo, hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion was highly dependent on and critically rate-limited by the induced transmembrane influx of [1-13C]pyruvate mediated by MCT1. Thus, hyperpolarized [1-13C]pyruvate MRSI measures primarily MCT1-mediated [1-13C]pyruvate transmembrane influx in vivo, not glycolytic flux or LDHA activity, driving a reinterpretation of this maturing new technology during clinical translation. Indeed, Kaplan-Meier survival analysis for patients with pancreatic, renal, lung, and cervical cancers showed that high-level expression of MCT1 correlated with poor overall survival, and only in selected tumors, coincident with LDHA expression. Thus, hyperpolarized [1-13C]pyruvate MRSI provides a noninvasive functional assessment primarily of MCT1 as a clinical biomarker in relevant patient populations.


Assuntos
Isótopos de Carbono/metabolismo , Membrana Celular/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/química , Linhagem Celular Tumoral , Membrana Celular/química , Feminino , Humanos , Ácido Láctico/análise , Ácido Láctico/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ácido Pirúvico/análise , Ácido Pirúvico/química
3.
J Biol Chem ; 297(1): 100775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022218

RESUMO

Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.


Assuntos
L-Lactato Desidrogenase/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/farmacologia , Simportadores/metabolismo , Ácidos/metabolismo , Soluções Tampão , Isótopos de Carbono , Extratos Celulares , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espaço Extracelular/química , Glicólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/biossíntese , Especificidade por Substrato/efeitos dos fármacos
4.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163565

RESUMO

Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear receptor known to play an essential role in regulation of cell metabolism, cell proliferation, inflammation, and tumorigenesis in normal and cancer cells. Recently, we found that a newly generated villin-PPARD mouse model, in which PPARD is overexpressed in villin-positive gastric progenitor cells, demonstrated spontaneous development of large, invasive gastric tumors as the mice aged. However, the role of PPARD in regulation of downstream metabolism in normal gastric and tumor cells is elusive. The aim of the present study was to find PPARD-regulated downstream metabolic changes and to determine the potential significance of those changes to gastric tumorigenesis in mice. Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and liquid chromatography-mass spectrometry were employed for metabolic profiling to determine the PPARD-regulated metabolite changes in PPARD mice at different ages during the development of gastric cancer, and the changes were compared to corresponding wild-type mice. Nuclear magnetic resonance spectroscopy-based metabolomic screening results showed higher levels of inosine monophosphate (p = 0.0054), uracil (p = 0.0205), phenylalanine (p = 0.017), glycine (p = 0.014), and isocitrate (p = 0.029) and lower levels of inosine (p = 0.0188) in 55-week-old PPARD mice than in 55-week-old wild-type mice. As the PPARD mice aged from 10 weeks to 35 weeks and 55 weeks, we observed significant changes in levels of the metabolites inosine monophosphate (p = 0.0054), adenosine monophosphate (p = 0.009), UDP-glucose (p = 0.0006), and oxypurinol (p = 0.039). Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy performed to measure lactate flux in live 10-week-old PPARD mice with no gastric tumors and 35-week-old PPARD mice with gastric tumors did not reveal a significant difference in the ratio of lactate to total pyruvate plus lactate, indicating that this PPARD-induced spontaneous gastric tumor development does not require glycolysis as the main source of fuel for tumorigenesis. Liquid chromatography-mass spectrometry-based measurement of fatty acid levels showed lower linoleic acid, palmitic acid, oleic acid, and steric acid levels in 55-week-old PPARD mice than in 10-week-old PPARD mice, supporting fatty acid oxidation as a bioenergy source for PPARD-expressing gastric tumors.


Assuntos
Metabolômica/métodos , Proteínas dos Microfilamentos/genética , PPAR delta/genética , Neoplasias Gástricas/patologia , Regulação para Cima , Monofosfato de Adenosina/análise , Animais , Cromatografia Líquida , Ácidos Graxos/análise , Feminino , Engenharia Genética , Imageamento por Ressonância Magnética , Masculino , Espectrometria de Massas , Camundongos , Neoplasias Experimentais , Oxipurinol/análise , Regiões Promotoras Genéticas , Estudos Prospectivos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Uridina Difosfato Glucose/análise
5.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799686

RESUMO

Von Hippel Lindau (VHL) inactivation, which is common in clear cell renal cell carcinoma (ccRCC), leads directly to the disruption of oxygen homoeostasis. VHL works through hypoxia-inducible factors (HIFs). Within this VHL-HIF system, prolyl hydroxylases (PHDs) are the intermediary proteins that initiate the degradation of HIFs. PHD isoform 3's (PHD3) role in ccRCC growth in vivo is poorly understood. Using viral transduction, we knocked down the expression of PHD3 in the human ccRCC cell line UMRC3. Compared with control cells transduced with scrambled vector (UMRC3-SC cells), PHD3-knockdown cells (UMRC3-PHD3KD cells) showed increased cell invasion, tumor growth, and response to sunitinib. PHD3 knockdown reduced HIF2α expression and increased phosphorylated epidermal growth factor (EGFR) expression in untreated tumor models. However, following sunitinib treatment, expression of HIF2α and phosphorylated EGFR were equivalent in both PHD3 knockdown and control tumors. PHD3 knockdown changed the overall redox state of the cell as seen by the increased concentration of glutathione in PHD3 knockdown tumors relative to control tumors. UMRC3-PHD3KD cells had increased proliferation in cell culture when grown in the presence of hydrogen peroxide compared to UMRC3-SC control cells. Our findings illustrate (1) the variable effect of PHD3 on HIF2α expression, (2) an inverse relationship between PHD3 expression and tumor growth in ccRCC animal models, and (3) the role of PHD3 in maintaining the redox state of UMRC3 cells and their proliferative rate under oxidative stress.


Assuntos
Carcinoma de Células Renais/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Neoplasias Renais/genética , Mutação , Interferência de RNA , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/efeitos dos fármacos , Sunitinibe/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466260

RESUMO

While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.


Assuntos
Carcinoma in Situ/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Alanina Transaminase/sangue , Animais , Isótopos de Carbono , Carcinoma in Situ/sangue , Carcinoma in Situ/genética , L-Lactato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética/normas , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Sensibilidade e Especificidade
7.
J Proteome Res ; 18(7): 2826-2834, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120258

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.


Assuntos
Biomarcadores Tumorais/metabolismo , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico , Animais , Carcinoma Ductal Pancreático , Glicólise , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/metabolismo , Ácido Pirúvico/metabolismo
8.
Angew Chem Int Ed Engl ; 58(13): 4179-4183, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30680862

RESUMO

Hyperpolarized magnetic resonance spectroscopy enables quantitative, non-radioactive, real-time measurement of imaging probe biodistribution and metabolism in vivo. Here, we investigate and report on the development and characterization of hyperpolarized acetylsalicylic acid (aspirin) and its use as a nuclear magnetic resonance (NMR) probe. Aspirin derivatives were synthesized with single- and double-13 C labels and hyperpolarized by dynamic nuclear polarization with 4.7 % and 3 % polarization, respectively. The longitudinal relaxation constants (T1 ) for the labeled acetyl and carboxyl carbonyls were approximately 30 seconds, supporting in vivo imaging and spectroscopy applications. In vitro hydrolysis, transacetylation, and albumin binding of hyperpolarized aspirin were readily monitored in real time by 13 C-NMR spectroscopy. Hyperpolarized, double-labeled aspirin was well tolerated in mice and could be observed by both 13 C-MR imaging and 13 C-NMR spectroscopy in vivo.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Aspirina/farmacocinética , Isótopos de Carbono/análise , Soroalbumina Bovina/metabolismo , Acetilação , Animais , Anti-Inflamatórios não Esteroides/química , Aspirina/química , Hidrólise , Masculino , Camundongos , Distribuição Tecidual
9.
Angew Chem Int Ed Engl ; 57(35): 11140-11162, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29484795

RESUMO

Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.


Assuntos
Meios de Contraste/química , Hidrogênio/química , Imageamento por Ressonância Magnética/métodos , Animais , Catálise , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação
10.
BMC Cancer ; 16(1): 824, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784287

RESUMO

BACKGROUND: Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. METHODS: We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. RESULTS: Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [18F]-FDG uptake, and significantly altered choline metabolism. CONCLUSIONS: ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up-regulation of glycolysis and glutaminolysis is autophagy-dependent and serves to support cell viability rather than facilitate necroptotic cell death. While the mechanistic basis for metabolic up-regulation following ARHI induction is unknown, our preliminary data suggest that decreased mitochondrial function and increased metabolic demand may play a role. These alterations in fundamental metabolic pathways during autophagy-associated necroptosis may provide the basis for new therapeutic strategies for the treatment of dormant ovarian tumors.


Assuntos
Autofagia , Redes e Vias Metabólicas , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Glicólise , Xenoenxertos , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Neoplasias Ovarianas/diagnóstico por imagem , Estresse Oxidativo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
11.
Cancers (Basel) ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473423

RESUMO

Metastatic penile squamous cell carcinoma (PSCC) has only a 50% response rate to first-line combination chemotherapies and there are currently no targeted-therapy approaches. Therefore, we have an urgent need in advanced-PSCC treatment to find novel therapies. Approximately half of all PSCC cases are positive for high-risk human papillomavirus (HR-HPV). Our objective was to generate HPV-positive (HPV+) and HPV-negative (HPV-) patient-derived xenograft (PDX) models and to determine the biological differences between HPV+ and HPV- disease. We generated four HPV+ and three HPV- PSCC PDX animal models by directly implanting resected patient tumor tissue into immunocompromised mice. PDX tumor tissue was found to be similar to patient tumor tissue (donor tissue) by histology and short tandem repeat fingerprinting. DNA mutations were mostly preserved in PDX tissues and similar APOBEC (apolipoprotein B mRNA editing catalytic polypeptide) mutational fractions in donor tissue and PDX tissues were noted. A higher APOBEC mutational fraction was found in HPV+ versus HPV- PDX tissues (p = 0.044), and significant transcriptomic and proteomic expression differences based on HPV status included p16 (CDKN2A), RRM2, and CDC25C. These models will allow for the direct testing of targeted therapies in PSCC and determine their response in correlation to HPV status.

12.
J Clin Med ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929965

RESUMO

Germ cell tumor of the testis (GCT) is a curable cancer even when it is widely metastatic; however, outcomes can differ based on tumor histology. Chemo-resistance in certain phenotypes, such as teratoma and yolk sac tumor, contributes to poor clinical outcomes in some patients with GCT. Despite this resistance to S-YSTemic therapy, many of these tumor subtypes remain amenable to surgical resection and possible cure. In this study, we report on a series of seven patients highlighting two chemo-resistant subtypes of nonseminomatous germ cell tumor (NSGCT), sarcomatoid yolk sac tumor (S-YST), and epithelioid trophoblastic tumor (ETT) for which early resection rather than additional salvage chemotherapy or high-dose intense chemotherapy might provide a superior clinical outcome and enhance cure rate.

13.
Cancers (Basel) ; 16(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38275860

RESUMO

Penile squamous cell carcinoma (PSCC) is a rare and deadly malignancy. Therapeutic advances have been stifled by a poor understanding of disease biology. Specifically, the immune microenvironment is an underexplored component in PSCC and the activity of immune checkpoint inhibitors observed in a subset of patients suggests immune escape may play an important role in tumorigenesis. Herein, we explored for the first time the immune microenvironment of 57 men with PSCC and how it varies with the presence of human papillomavirus (HPV) infection and across tumor stages using multiplex immunofluorescence of key immune cell markers. We observed an increase in the density of immune effector cells in node-negative tumors and a progressive rise in inhibitory immune players such as type 2 macrophages and upregulation of the PD-L1 checkpoint in men with N1 and N2-3 disease. There were no differences in immune cell densities with HPV status.

14.
J Natl Cancer Inst ; 116(6): 966-973, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38366627

RESUMO

INTRODUCTION: This study investigated the efficacy and safety of neoadjuvant chemotherapy for locally advance penile squamous cell carcinoma for which current evidence is lacking. METHODS: Included patients had locally advanced penile squamous cell carcinoma with clinical lymph node metastasis treated with at least 1 dose of neoadjuvant chemotherapy prior to planned consolidative lymphadenectomy. Objective response rates were assessed using Response Evaluation Criteria in Solid Tumors v1.1. The primary and secondary outcomes were overall survival and progression-free survival, estimated by the Kaplan-Meier method. Treatment-related adverse events were graded per the Common Terminology Criteria for Adverse Events v5.0. RESULTS: A total of 209 patients received neoadjuvant chemotherapy for locally advanced and clinically node-positive penile squamous cell carcinoma. The study population consisted of 7% of patients with stage II disease, 48% with stage III, and 45% with stage IV. Grade 2 treatment-related adverse events occurred in 35 (17%) patients, and no treatment-related mortality was observed. Of the patients, 201 (97%) completed planned consolidative lymphadenectomy. During follow-up, 106 (52.7%) patients expired, with a median overall survival of 37.0 months (95% confidence interval [CI] = 23.8 to 50.1 months) and median progression-free survival of 26.0 months (95% CI = 11.7 to 40.2 months). Objective response rate was 57.2%, with 87 (43.2%) having partial response and 28 (13.9%) having a complete response. Patients with objective response to neoadjuvant chemotherapy had a longer median overall survival (73.0 vs 17.0 months, P < .01) compared with those who did not. The lymph node pathologic complete response rate was 24.8% in the cohort. CONCLUSION: Neoadjuvant chemotherapy with lymphadenectomy for locally advanced penile squamous cell carcinoma is well tolerated and active to reduce the disease burden and improve long-term survival outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Células Escamosas , Excisão de Linfonodo , Terapia Neoadjuvante , Neoplasias Penianas , Humanos , Masculino , Neoplasias Penianas/tratamento farmacológico , Neoplasias Penianas/patologia , Neoplasias Penianas/mortalidade , Neoplasias Penianas/cirurgia , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Adulto , Estadiamento de Neoplasias , Metástase Linfática , Estudos Retrospectivos , Quimioterapia Adjuvante , Idoso de 80 Anos ou mais
15.
J Am Chem Soc ; 134(2): 934-43, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22146049

RESUMO

The Krebs tricarboxylic acid cycle (TCA) is central to metabolic energy production and is known to be altered in many disease states. Real-time molecular imaging of the TCA cycle in vivo will be important in understanding the metabolic basis of several diseases. Positron emission tomography (PET) with FDG-glucose (2-[(18)F]fluoro-2-deoxy-d-glucose) is already being used as a metabolic imaging agent in clinics. However, FDG-glucose does not reveal anything past glucose uptake and phosphorylation. We have developed a new metabolic imaging agent, hyperpolarized diethyl succinate-1-(13)C-2,3-d(2) , that allows for real-time in vivo imaging and spectroscopy of the TCA cycle. Diethyl succinate can be hyperpolarized via parahydrogen-induced polarization (PHIP) in an aqueous solution with signal enhancement of 5000 compared to Boltzmann polarization. (13)C magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) were achieved in vivo seconds after injection of 10-20 µmol of hyperpolarized diethyl succinate into normal mice. The downstream metabolites of hyperpolarized diethyl succinate were identified in vivo as malate, succinate, fumarate, and aspartate. The metabolism of diethyl succinate was altered after exposing the animal to 3-nitropropionate, a known irreversible inhibitor of succinate dehydrogenase. On the basis of our results, hyperpolarized diethyl succinate allows for real-time in vivo MRI and MRS with a high signal-to-noise ratio and with visualization of multiple steps of the TCA cycle. Hyperpolarization of diethyl succinate and its in vivo applications may reveal an entirely new regime wherein the local status of TCA cycle metabolism is interrogated on the time scale of seconds to minutes with unprecedented chemical specificity and MR sensitivity.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Succinatos/farmacocinética , Animais , Isótopos de Carbono , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise Espectral , Succinatos/química , Succinatos/metabolismo , Distribuição Tecidual
16.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158923

RESUMO

To be dormant or not depends on the origin and nature of both the cell and its niche. Similar to other cancer hallmarks, dormancy is ingrained with stemness, and stemness is embedded within dormancy. After all, cancer dormancy is dependent on multiple factors such as cell cycle arrest, metabolic inactivity, and the microenvironment. It is the net results and sum effects of a myriad of cellular interactions, interconnections, and interplays. When we unite all cancer networks and integrate all cancer hallmarks, we practice and preach a unified theory of cancer. From this perspective, we review cancer dormancy in the context of a stem cell theory of cancer. We revisit the seed and soil hypothesis of cancer. We reexamine its implications in both primary tumors and metastatic lesions. We reassess its roles in cell cycle arrest, metabolic inactivity, and stemness property. Cancer dormancy is particularly revealing when it informs us about the mysteries of late relapse, prolonged remission, and second malignancy. It is paradoxically rewarding when it delivers us the promises and power of cancer prevention and maintenance therapy in patient care.

17.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326699

RESUMO

When it concerns cancer care and cancer therapy, drug resistance is more than an obstacle to successful treatment; it is a major cause of frustration in our attempts to optimize drug development versus therapy development. Importantly, overcoming the challenges of drug resistance may provide invaluable clues about the origin and nature of cancer. From this perspective, we discuss how chemoresistance and chemosensitivity in cancer therapy could be directly linked to the stem cell origin of cancer. A stem cell theory of cancer stipulates that both normal stem cells and cancer stem cells are similarly endowed with robust efflux pumps, potent antiapoptotic mechanisms, redundant DNA repair systems, and abundant antioxidation reserves. Cancer stem cells, like their normal stem cell counterparts, are equipped with the same drug resistance phenotypes (e.g., ABC transporters, anti-apoptotic pathways, and DNA repair mechanisms). Drug resistance, like other cancer hallmarks (e.g., tumor heterogeneity and cancer dormancy), could be intrinsically ingrained and innately embedded within malignancy. We elaborate that cellular context and the microenvironment may attenuate the effects of cancer treatments. We examine the role of circadian rhythms and the value of chronotherapy to maximize efficacy and minimize toxicity. We propose that a stem cell theory of drug resistance and drug sensitivity will ultimately empower us to enhance drug development and enable us to improve therapy development in patient care.

18.
ACS Chem Biol ; 17(6): 1543-1555, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35611948

RESUMO

Therapeutic monoclonal antibodies directed against PD-L1 (e.g., atezolizumab) disrupt PD-L1:PD-1 signaling and reactivate exhausted cytotoxic T-cells in the tumor compartment. Although anti-PD-L1 antibodies are successful as immune checkpoint inhibitor (ICI) therapeutics, there is still a pressing need to develop high-affinity, low-molecular-weight ligands for molecular imaging and diagnostic applications. Affibodies are small polypeptides (∼60 amino acids) that provide a stable molecular scaffold from which to evolve high-affinity ligands. Despite its proven utility in the development of imaging probes, this scaffold has never been optimized for use in mRNA display, a powerful in vitro selection platform incorporating high library diversity, unnatural amino acids, and chemical modification. In this manuscript, we describe the selection of a PD-L1-binding affibody by mRNA display. Following randomization of the 13 amino acids that define the binding interface of the well-described Her2 affibody, the resulting library was selected against recombinant human PD-L1 (hPD-L1). After four rounds, the enriched library was split and selected against either hPD-L1 or the mouse ortholog (mPD-L1). The dual target selection resulted in the identification of a human/mouse cross-reactive PD-L1 affibody (M1) with low nanomolar affinity for both targets. The M1 affibody bound with similar affinity to mPD-L1 and hPD-L1 expressed on the cell surface and inhibited signaling through the PD-L1:PD-1 axis at low micromolar concentrations in a cell-based functional assay. In vivo optical imaging with M1-Cy5 in an immune-competent mouse model of lymphoma revealed significant tumor uptake relative to a Cy5-conjugated Her2 affibody.


Assuntos
Antígeno B7-H1 , Neoplasias , Aminoácidos , Animais , Antígeno B7-H1/metabolismo , Ligantes , Camundongos , Receptor de Morte Celular Programada 1 , RNA Mensageiro/genética
19.
Clin Genitourin Cancer ; 20(4): e330-e338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35279419

RESUMO

INTRODUCTION: Surgical resection of renal cell carcinoma (RCC) with inferior vena cava (IVC) thrombus is a complex procedure with significant morbidity. Patient selection is critical to determining whether the benefits of the procedure outweigh the risks. In this study, we identified and stratified the risk factors that were associated with overall survival (OS) and recurrence-free survival (RFS) in patients undergoing surgical resection of RCC with IVC thrombus. METHODS: We identified all patients with RCC with IVC tumor thrombus (stages cT3b and cT3c) who had undergone radical nephrectomy with tumor thrombectomy between December 1, 1993 and June 30, 2009. Kaplan-Meier method was used to estimate OS and RFS. Cox proportional hazards models were used to determine the association between risk factors and OS. Patients were stratified into 3 groups based on the number of risk factors present at diagnosis. RESULTS: Two hundred twenty-four patients were included in the study. A total of 45.3% of patients had metastasis at presentation, 84.5% had cT3b, and 90.2% had clear cell RCC. cT3c, cN1, and cM1 were significantly associated with the risk of death. Group 1 patients (0 risk factors) had a median OS duration of 77.6 months (95% CI 50.5-90.4), group 2 (1 risk factor) 26.0 months (95% CI 19.5-35.2), and group 3 (≥2 risk factors) 8.9 months (95% CI 5.2-12.9; P < .001). CONCLUSIONS: Stratification of patients with RCC and IVC thrombus by risk factors allowed us to predict survival duration. In patients with ≥2 risk factors, new treatment strategies with preoperative systemic therapy may improve survival.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Trombose Venosa , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/patologia , Nefrectomia/métodos , Estudos Retrospectivos , Trombectomia/efeitos adversos , Trombectomia/métodos , Veia Cava Inferior/patologia , Veia Cava Inferior/cirurgia , Trombose Venosa/etiologia , Trombose Venosa/cirurgia
20.
Diagnostics (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35328163

RESUMO

Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA