RESUMO
Vascular endothelial growth factor receptor 2 (VEGFR2, encoded by KDR) regulates endothelial function and angiogenesis. VEGFR2 undergoes ubiquitination that programs this receptor for trafficking and proteolysis, but the ubiquitin-modifying enzymes involved are ill-defined. Herein, we used a reverse genetics screen for the human E2 family of ubiquitin-conjugating enzymes to identify gene products that regulate VEGFR2 ubiquitination and proteolysis. We found that depletion of either UBE2D1 or UBE2D2 in endothelial cells caused a rise in steady-state VEGFR2 levels. This rise in plasma membrane VEGFR2 levels impacted on VEGF-A-stimulated signalling, with increased activation of canonical MAPK, phospholipase Cγ1 and Akt pathways. Analysis of biosynthetic VEGFR2 is consistent with a role for UBE2D enzymes in influencing plasma membrane VEGFR2 levels. Cell-surface-specific biotinylation and recycling studies showed an increase in VEGFR2 recycling to the plasma membrane upon reduction in UBE2D levels. Depletion of either UBE2D1 or UBE2D2 stimulated endothelial tubulogenesis, which is consistent with increased VEGFR2 plasma membrane levels promoting the cellular response to exogenous VEGF-A. Our studies identify a key role for UBE2D1 and UBE2D2 in regulating VEGFR2 function in angiogenesis.
Assuntos
Células Endoteliais , Enzimas de Conjugação de Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/genética , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , UbiquitinaçãoRESUMO
Unlike adult mammals, zebrafish can regenerate their heart. A key mechanism for regeneration is the activation of the epicardium, leading to the establishment of a supporting scaffold for new cardiomyocytes, angiogenesis and cytokine secretion. Neuropilins are co-receptors that mediate signaling of kinase receptors for cytokines with crucial roles in zebrafish heart regeneration. We investigated the role of neuropilins in response to cardiac injury and heart regeneration. All four neuropilin isoforms (nrp1a, nrp1b, nrp2a and nrp2b) were upregulated by the activated epicardium and an nrp1a-knockout mutant showed a significant delay in heart regeneration and displayed persistent collagen deposition. The regenerating hearts of nrp1a mutants were less vascularized, and epicardial-derived cell migration and re-expression of the developmental gene wt1b was impaired. Moreover, cryoinjury-induced activation and migration of epicardial cells in heart explants were reduced in nrp1a mutants. These results identify a key role for Nrp1 in zebrafish heart regeneration, mediated through epicardial activation, migration and revascularization.
Assuntos
Coração/fisiologia , Neovascularização Fisiológica/genética , Neuropilina-1/fisiologia , Pericárdio/fisiologia , Regeneração/genética , Animais , Animais Geneticamente Modificados , Movimento Celular/genética , Células Cultivadas , Temperatura Baixa , Vasos Coronários/fisiologia , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/patologia , Traumatismos Cardíacos/fisiopatologia , Miócitos Cardíacos/fisiologia , Neuropilina-1/genética , Ratos , Peixe-Zebra/fisiologiaRESUMO
Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.
Assuntos
Neuropilina-1/metabolismo , Peptídeos/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Humanos , Neuropilina-1/química , Peptídeos/química , Ligação Proteica , Fator B de Crescimento do Endotélio Vascular/químicaRESUMO
BACKGROUND: Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS: The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells and aortic rings isolated from wild-type, endothelium-specific CNP-/-, global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and human umbilical vein endothelial cells. These studies were complemented by in vivo investigation of neovascularization and vascular remodeling after ischemia or vessel injury, and CNP/NPR-C expression and localization in tissue from patients with peripheral artery disease. RESULTS: Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of pulmonary microvascular endothelial cells, human umbilical vein endothelial cells, and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in endothelium-specific CNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The proangiogenic effect of CNP/NPR-C is dependent on activation of Gi, ERK1/2, and phosphoinositide 3-kinase γ/Akt at a molecular level. CONCLUSIONS: These data define a central (patho)physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating peripheral artery disease and ischemic cardiovascular disorders.
Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Animais , Hipóxia Celular , Humanos , Camundongos , Camundongos Knockout , Peptídeo Natriurético Tipo C/genética , Remodelação VascularRESUMO
p130Cas is a polyvalent adapter protein essential for cardiovascular development, and with a key role in cell movement. In order to identify the pathways by which p130Cas exerts its biological functions in endothelial cells we mapped the p130Cas interactome and its dynamic changes in response to VEGF using high-resolution mass spectrometry and reconstruction of protein interaction (PPI) networks with the aid of multiple PPI databases. VEGF enriched the p130Cas interactome in proteins involved in actin cytoskeletal dynamics and cell movement, including actin-binding proteins, small GTPases and regulators or binders of GTPases. Detailed studies showed that p130Cas association of the GTPase-binding scaffold protein, IQGAP1, plays a key role in VEGF chemotactic signaling, endothelial polarization, VEGF-induced cell migration, and endothelial tube formation. These findings indicate a cardinal role for assembly of the p130Cas interactome in mediating the cell migratory response to VEGF in angiogenesis, and provide a basis for further studies of p130Cas in cell movement.
Assuntos
Quimiotaxia/efeitos dos fármacos , Proteína Substrato Associada a Crk/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteômica/métodos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Bases de Dados de Proteínas , Células Endoteliais da Veia Umbilical Humana , Humanos , Espectrometria de Massas , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
DOK1 regulates platelet-derived growth factor (PDGF)-BB-stimulated glioma cell motility. Mechanisms regulating tumour cell motility are essential for invasion and metastasis. We report here that PDGF-BB-mediated glioma cell invasion and migration are dependent on the adaptor protein downstream of kinase 1 (DOK1). DOK1 is expressed in several glioma cell lines and in tumour biopsies from high-grade gliomas. DOK1 becomes tyrosine phosphorylated upon PDGF-BB stimulation of human glioma cells. Knockdown of DOK1 or expression of a DOK1 mutant (DOK1FF) containing Phe in place of Tyr at residues 362 and 398, resulted in inhibition of both the PDGF-BB-induced tyrosine phosphorylation of p130Cas (also known as BCAR1) and the activation of Rap1. DOK1 colocalises with tyrosine phosphorylated p130Cas at the cell membrane of PDGF-BB-treated cells. Expression of a non-tyrosine-phosphorylatable substrate domain mutant of p130Cas (p130Cas15F) inhibited PDGF-BB-mediated Rap1 activation. Knockdown of DOK1 and Rap1 inhibited PDGF-BB-induced chemotactic cell migration, and knockdown of DOK1 and Rap1 and expression of DOK1FF inhibited PDGF-mediated three-dimensional (3D) spheroid invasion. These data show a crucial role for DOK1 in the regulation of PDGF-BB-mediated tumour cell motility through a p130Cas-Rap1 signalling pathway. [Corrected]
Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Substrato Associada a Crk/metabolismo , Proteínas de Ligação a DNA/fisiologia , Glioblastoma/metabolismo , Fosfoproteínas/fisiologia , Proteínas Proto-Oncogênicas c-sis/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Becaplermina , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Quimiotaxia , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Complexo Shelterina , Transdução de Sinais , Quinases da Família src/metabolismoRESUMO
Uterine artery (UtA) adenovirus (Ad) vector-mediated overexpression of vascular endothelial growth factor (VEGF) enhances uterine blood flow in normal sheep pregnancy and increases fetal growth in the overnourished adolescent sheep model of fetal growth restriction (FGR). Herein, we examined its impact on gestation length, neonatal survival, early postnatal growth and metabolism. Singleton-bearing ewes were evenly allocated to receive Ad.VEGF-A165 (5 × 10(10) particles/ml, 10 ml, n = 17) or saline (10 ml, n = 16) injected into each UtA at laparotomy (0.6 gestation). Fetal growth was serially monitored (blind) by ultrasound until delivery. Lambs were weighed and blood was sampled weekly and a glucose tolerance test performed (68-day postnatal age). Hepatic DNA/RNA was extracted at necropsy (83-day postnatal age) to examine methylation status of eight somatotropic axis genes. IGF1 mRNA and protein expression were measured by RT-PCR and radioimmunoassay, respectively. All pregnancies remained viable following Ad.VEGF-A165 treatment. Fetal abdominal circumference and renal volume were greater in the Ad.VEGF-A165 group compared with the saline group at 21/28 days (P ≤ 0.04) postinjection. At delivery, gestation length (P = 0.07), lamb birthweight (P = 0.08), umbilical girth (P = 0.06), and plasma glucose (P = 0.09) tended to be greater in Ad.VEGF-A165-treated lambs. Levels of neonatal intervention required to ensure survival was equivalent between groups. Absolute postnatal growth rate (P = 0.02), insulin area under the curve (P = 0.04) and carcass weight at necropsy (P = 0.04) were increased by Ad.VEGF-A165 treatment. There was no impact on markers of insulin sensitivity or methylation/expression of key genes involved in somatic growth. Ad.VEGF-A165 gene therapy increased fetal growth in a sheep FGR model, and lambs continued to thrive during the neonatal and early postnatal period.
Assuntos
Retardo do Crescimento Fetal/terapia , Terapia Genética , Fator A de Crescimento do Endotélio Vascular/genética , Adenoviridae , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Composição Corporal , Metilação de DNA , Feminino , Desenvolvimento Fetal , Teste de Tolerância a Glucose , Gravidez , Resultado da Gravidez , OvinosRESUMO
The interaction between VEGF-A and its neuropilin (NRP) receptors mediates a number of important biological effects. NRP1 and the related molecule NRP2 are widely expressed on multiple tumour types and throughout the tumour vasculature, and are emerging as critical molecules required for the progression of angiogenic diseases. Given the increasing evidence supporting a role for NRP1 in tumour development, there is growing interest in developing inhibitors of NRP1 interactions with VEGF and its other ligands. In order to probe the interaction we synthesised a number of exon 7- and 8-derived bicyclic peptides with N-terminal lipophilic groups and found a simple N-octanoyl derivative (EG00086) to be the most potent and functionally active. Detailed modelling studies indicated that new intramolecular hydrogen bonds were formed, stabilising the structure and possibly contributing to the potency. Removal of a salt bridge between D142 and R164 implicated in VEGF-A binding to neuropilin-1 had a minor effect on potency. Isothermal calorimetry was used to assess binding of EG00086 to NRP1 and NRP2, and the stability of the peptide in serum and in vivo was investigated. EG00086 is a potent blocker of VEGF-promoted cellular adhesion to extracellular matrices, and phosphorylation of p130Cas contributes to this effect.
Assuntos
Neuropilina-1/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína Substrato Associada a Crk/metabolismo , Éxons/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Simulação de Dinâmica Molecular , Neuropilina-1/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Vascular endothelial growth factor A (VEGF-A)-induced signaling through VEGF receptor 2 (VEGFR2) regulates both physiological and pathological angiogenesis in mammals. However, the temporal and spatial mechanism underlying VEGFR2-mediated intracellular signaling is not clear. Here, we define a pathway for VEGFR2 trafficking and proteolysis that regulates VEGF-A-stimulated signaling and endothelial cell migration. Ligand-stimulated VEGFR2 activation and ubiquitination preceded proteolysis and cytoplasmic domain removal associated with endosomes. A soluble VEGFR2 cytoplasmic domain fragment displayed tyrosine phosphorylation and activation of downstream intracellular signaling. Perturbation of endocytosis by the depletion of either clathrin heavy chain or an ESCRT-0 subunit caused differential effects on ligand-stimulated VEGFR2 proteolysis and signaling. This novel VEGFR2 proteolysis was blocked by the inhibitors of 26S proteasome activity. Inhibition of proteasome activity prolonged VEGF-A-induced intracellular signaling to c-Akt and endothelial nitric oxide synthase (eNOS). VEGF-A-stimulated endothelial cell migration was dependent on VEGFR2 and VEGFR tyrosine kinase activity. Inhibition of proteasome activity in this assay stimulated VEGF-A-mediated endothelial cell migration. VEGFR2 endocytosis, ubiquitination and proteolysis could also be stimulated by a protein kinase C-dependent pathway. Thus, removal of the VEGFR2 carboxyl terminus linked to phosphorylation, ubiquitination and trafficking is necessary for VEGF-stimulated endothelial signaling and cell migration.
Assuntos
Células Endoteliais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Ligantes , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/metabolismo , Microscopia de Fluorescência , Neovascularização Patológica/enzimologia , Neovascularização Patológica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte ProteicoRESUMO
NRP1 (neuropilin-1) is a co-receptor for members of the VEGF (vascular endothelial growth factor) family in endothelial cells, but is increasingly implicated in signalling induced by other growth factors. NRP1 is expressed in VSMCs (vascular smooth muscle cells), but its function and the mechanisms involved are poorly understood. The present study aimed to determine the role of NRP1 in the migratory response of HCASMCs (human coronary artery smooth muscle cells) to PDGF (platelet-derived growth factor), and to identify the signalling mechanisms involved. NRP1 is highly expressed in HAoSMCs (human aortic smooth muscle cells) and HCASMCs, and modified in VSMCs by CS (chondroitin sulfate)-rich O-linked glycosylation at Ser612. HCASMC migration induced by PDGF-BB and PDGF-AA was inhibited by NRP1 siRNA (small interfering RNA), and by adenoviral overexpression of an NRP1 mutant lacking the intracellular domain (Ad.NRP1ΔC). NRP1 co-immunoprecipitated with PDGFRα (PDGF receptor α), and immunofluorescent staining indicated that NRP1 and PDGFRα co-localized in VSMCs. NRP1 siRNA also inhibited PDGF-induced PDGFRα activation. NRP1-specific siRNA, Ad.NRP1ΔC and removal of CS glycans using chondroitinase all inhibited PDGF-BB and -AA stimulation of tyrosine phosphorylation of the adapter protein, p130Cas (Cas is Crk-associated substrate), with little effect on other major signalling pathways, and p130Cas knockdown inhibited HCASMC migration. Chemotaxis and p130Cas phosphorylation induced by PDGF were inhibited by chondroitinase, and, additionally, adenoviral expression of a non-glycosylatable NRP1S612A mutant inhibited chemotaxis, but not p130Cas phosphorylation. These results indicate a role for NRP1 and NRP1 glycosylation in mediating PDGF-induced VSMC migration, possibly by acting as a co-receptor for PDGFRα and via selective mobilization of a novel p130Cas tyrosine phosphorylation pathway.
Assuntos
Proteína Substrato Associada a Crk/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Neuropilina-1/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Adenoviridae , Movimento Celular , Células Cultivadas , Quimiotaxia , Proteína Substrato Associada a Crk/genética , Células Endoteliais , Humanos , Mutação , Miócitos de Músculo Liso/citologia , Neuropilina-1/genética , Fator de Crescimento Derivado de Plaquetas/genéticaRESUMO
The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.
Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
The Protein Kinase D (PKD) family comprises diacylglycerol stimulated serine/threonine protein kinases that participate in many key signaling pathways in a diverse range of cells. Recent studies show that PKD isoforms 1 and 2 play critical roles in vascular biology and angiogenesis and there has been considerable progress in determining some of the key angiogenic signaling pathways mediated by PKD in endothelial cells. Less is currently known regarding the specific roles of PKD isoforms in endothelial cells and the role of PKD in smooth muscle cells. PKD is also emerging as a potentially important mediator of tumor growth and tumor angiogenesis and there is growing interest in PKD as a novel therapeutic target in cancer.
Assuntos
Músculo Liso Vascular/fisiologia , Neovascularização Patológica/metabolismo , Proteína Quinase C/metabolismo , Animais , Células Endoteliais/metabolismo , Humanos , Isoenzimas/metabolismo , Músculo Liso Vascular/metabolismo , Neoplasias/irrigação sanguínea , Transdução de SinaisRESUMO
Essential roles of NRP1 (neuropilin-1) in cardiovascular development and in neuronal axon targeting during embryogenesis are thought to be mediated primarily through binding of NRP1 to two unrelated types of ligands: the VEGF (vascular endothelial growth factor) family of angiogenic cytokines in the endothelium, and the class 3 semaphorins in neurons. A widely accepted mechanism for the role of NRP1 in the endothelium is VEGF binding to NRP1 and VEGFR2 (VEGF receptor 2) and VEGF-dependent formation of complexes or NRP1-VEGFR2 holoreceptors with enhanced signalling activity and biological function. However, although some basic features of this model are solidly based on biochemical and cellular data, others are open to question. Furthermore, a mechanistic account of NRP1 has to accommodate research which emphasizes the diversity of NRP1 functions in different cell types and particularly an emerging role in signalling by other growth factor ligands for RTKs (receptor tyrosine kinases) such as HGF (hepatocyte growth factor) and PDGF (platelet-derived growth factor). It is uncertain, however, whether the model of NRP1-RTK heterocomplex formation applies in all of these situations. In the light of these developments, the need to explain mechanistically the role of NRP1 in signalling is coming increasingly to the fore. The present article focuses on some of the most important unresolved questions concerning the mechanism(s) through which NRP1 acts, and highlights recent findings which are beginning to generate insights into these questions.
Assuntos
Neuropilina-1/química , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Endotélio Vascular/metabolismo , Humanos , Neuropilina-1/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis.
Assuntos
Endotélio Vascular/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Especificidade por Substrato , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for vascular endothelial growth factor and class 3 Semaphorins, is highly expressed in many human tumour cell lines, but its function is poorly understood. Here, we describe the expression of a new chondroitin sulphate-modified NRP1 (NRP1-CS) in human tumour cell lines. Expression of a non-modifiable NRP1 mutant (S612A) in U87MG human glioma cells results in enhanced invasion in three dimensions (3D), whereas wild-type NRP1 has no effect. Furthermore, the S612A NRP1 cells show a significant increase in p130Cas tyrosine phosphorylation compared with control and wild-type NRP1 cells. Silencing of p130Cas in S612A NRP1 cells resulted in a loss of increased invasive phenotype. Interestingly, p130Cas silencing does not inhibit basal 3D invasion, but leads to a mesenchymal to amoeboid transition. Biopsies from both low- and high-grade human gliomas show strong expression of NRP1, and little expression of NRP1-CS. Our data establish distinct roles for NRP1 and NRP1-CS in modulating a new NRP1-p130Cas signalling pathway contributing to glioblastoma cell invasion in 3D.
Assuntos
Sulfatos de Condroitina/fisiologia , Proteína Substrato Associada a Crk/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Neuropilina-1/genética , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Glioblastoma/genética , Humanos , Camundongos , Dados de Sequência Molecular , Invasividade Neoplásica , Neuropilina-1/biossíntese , Interferência de RNA , Ratos , SuínosRESUMO
OBJECTIVE: Vascular endothelial growth factor receptor 2 (VEGFR2) is a receptor tyrosine kinase that regulates vascular physiology. However, mechanism(s) by which VEGFR2 signaling and trafficking is coordinated are not clear. Here, we have tested endocytic Rab GTPases for regulation of VEGFR2 trafficking and signaling linked to endothelial cell migration. METHODS AND RESULTS: Quiescent VEGFR2 displays endosomal localization and colocalization with the Rab5a GTPase, an early endosome fusion regulator. Expression of GTP or GDP-bound Rab5a mutants block activated VEGFR2 trafficking and degradation. Manipulation of Rab7a GTPase activity associated with late endosomes using overexpression of wild-type or mutant proteins blocks activated VEGFR2 trafficking and degradation. Depletion of Rab7a decreased VEGFR2 Y1175 phosphorylation but increased p42/44 (pERK1/2) MAPK phosphorylation. Endothelial cell migration was increased by Rab5a depletion but decreased by Rab7a depletion. CONCLUSIONS: Rab5a and Rab7a regulate VEGFR2 trafficking toward early and late endosomes. Our data suggest that VEGFR2-mediated regulation of endothelial function is dependent on different but specific Rab-mediated GTP hydrolysis activity required for endosomal trafficking.
Assuntos
Células Endoteliais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas rab5 de Ligação ao GTP/fisiologia , Células Cultivadas , Humanos , Transdução de Sinais/fisiologia , Veias Umbilicais/citologia , Proteínas rab de Ligação ao GTP/fisiologia , proteínas de unión al GTP Rab7RESUMO
NRPs (neuropilins) are receptors for class 3 semaphorins, polypeptides essential for axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. While mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, little is known concerning the molecular mechanisms through which NRPs mediate the functions of their ligands in different cell types. NRP1 forms complexes with its co-receptors and is required for optimal function, but NRPs lack a clearly defined signalling domain and the role of NRP1 in receptor signalling and the function of the NRP1 cytosolic domain are unclear. Growing evidence indicates, however, that NRP1 plays a selective role in signalling at least in part via its C-terminal domain and interaction with intracellular binding partners.
Assuntos
Neuropilinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/metabolismo , Humanos , Neurônios/metabolismo , Neuropilinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Vascular injury initiates a cascade of phenotype-altering molecular events. Transcription factor function in this process, particularly that of negative regulators, is poorly understood. We demonstrate here that the forced expression of the injury-inducible GLI-Krüppel zinc finger protein Yin Yang-1 (YY1) inhibits neointima formation in human, rabbit and rat blood vessels. YY1 inhibits p21(WAF1/Cip1) transcription, prevents assembly of a p21(WAF1/Cip1)-cdk4-cyclin D1 complex, and blocks downstream pRb(Ser249/Thr252) phosphorylation and expression of PCNA and TK-1. Conversely, suppression of endogenous YY1 elevates levels of p21(WAF1/Cip1), PCNA, pRb(Ser249/Thr252) and TK-1, and increases intimal thickening. YY1 binds Sp1 and prevents its occupancy of a distinct element in the p21(WAF1/Cip1) promoter without YY1 itself binding the promoter. Additionally, YY1 induces ubiquitination and proteasome-dependent degradation of p53, decreasing p53 immunoreactivity in the artery wall. These findings define a new role for YY1 as both an inducer of p53 instability in smooth muscle cells, and an indirect repressor of p21(WAF1/Cip1) transcription, p21(WAF1/Cip1)-cdk4-cyclin D1 assembly and intimal thickening.
Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/metabolismo , Complexos Multiproteicos/metabolismo , Miócitos de Músculo Liso/metabolismo , Túnica Íntima/crescimento & desenvolvimento , Fator de Transcrição YY1/metabolismo , Animais , Artérias/citologia , Artérias/crescimento & desenvolvimento , Linhagem Celular , Ciclina D , Quinase 4 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Ciclinas/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Complexos Multiproteicos/genética , Miócitos de Músculo Liso/citologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Coelhos , Ratos , Elementos de Resposta/fisiologia , Proteína do Retinoblastoma/biossíntese , Proteína do Retinoblastoma/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Timidina Quinase/biossíntese , Timidina Quinase/genética , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética , Túnica Íntima/citologia , Fator de Transcrição YY1/genéticaRESUMO
Stanniocalcin-1 (STC-1) is a glycoprotein hormone originally identified as a regulator of calcium and phosphate homeostasis in bony fish. Up-regulation of the mammalian homolog in numerous gene profiling studies of angiogenesis and vascular endothelial growth factor-A (VEGF-A(165))-regulated gene expression, suggests that regulation of this factor may be a key feature of the angiogenic response. Here we investigated the mechanisms mediating VEGF-A(165)-induced STC-1 gene expression in human endothelial cells. VEGF-A(165), acting via VEGFR2/KDR, induced STC-1 through de novo transcription, mediated primarily via intracellular protein kinase C (PKC)- and extracellular signal-regulated protein kinase (ERK)-dependent pathways. VEGF-A(165)-induced STC-1 mRNA expression was synergistically enhanced up to 2-fold by co-treatment with FGF-2, in a mechanism dependent on VEGFR2/KDR and FGFR1. Production of STC-1 protein by endothelial cells was also induced by VEGF-A(165) and synergistically enhanced by co-treatment with FGF-2. Synergism between VEGF-A(165) and FGF-2 was mediated via a novel neuropilin-1 (NP-1)-dependent mechanism, as indicated by the complete inhibition of synergism with either EG3287, a specific neuropilin antagonist, or siRNA-mediated NP-1 knockdown, and by the inability of the VEGF-A(121) isoform to synergise with FGF-2. Surprisingly, we found that NP-1 knockdown also markedly reduced KDR expression in HUVECs, and enhanced the VEGF-A(165)-induced reduction in KDR expression resulting from receptor-mediated endocytosis. These findings support a role for NP-1 in mediating synergistic effects between VEGF-A(165) and FGF-2, which may occur in part through a contribution of NP-1 to KDR stability.
Assuntos
Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Neuropilina-1/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicoproteínas/genética , Humanos , Neovascularização Fisiológica , Neuropilina-1/antagonistas & inibidores , Neuropilina-1/genética , Fragmentos de Peptídeos/farmacologia , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Transcrição Gênica , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/farmacologiaRESUMO
Proteomic analysis identified HSP27 phosphorylation as a major change in protein phosphorylation stimulated by Vascular Endothelial Growth Factor (VEGF) in Human Umbilical Vein Endothelial Cells (HUVEC). VEGF-induced HSP27 phosphorylation at serines 15, 78 and 82, but whereas HSP27 phosphorylation induced by H2O2 and TNFalpha was completely blocked by the p38 kinase inhibitor, SB203580, VEGF-stimulated serine 82 phosphorylation was resistant to SB203580 and small interfering(si)RNA-mediated knockdown of p38 kinase and MAPKAPK2. The PKC inhibitor, GF109203X, partially reduced VEGF-induced HSP27 serine 82 phosphorylation, and SB203580 plus GF109203X abolished phosphorylation. VEGF activated Protein Kinase D (PKD) via PKC, and siRNAs targeted to PKD1 and PKD2 inhibited VEGF-induced HSP27 serine 82 phosphorylation. Furthermore recombinant PKD selectively phosphorylated HSP27 at serine 82 in vitro, and PKD2 activated by VEGF in HUVECs also phosphorylated HSP27 selectively at this site. Knockdown of HSP27 and PKDs markedly inhibited VEGF-induced HUVEC migration and tubulogenesis, whereas inhibition of the p38 kinase pathway using either SB203580 or siRNAs against p38alpha or MAPKAPK2, had no significant effect on the chemotactic response to VEGF. These findings identify a novel pathway for VEGF-induced HSP27 serine 82 phosphorylation via PKC-mediated PKD activation and direct phosphorylation of HSP27 by PKD, and show that PKDs and HSP27 play major roles in the angiogenic response to VEGF.