Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Alloys Compd ; 765: 236-244, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30008517

RESUMO

In this work, Mn-doped AZIS/ZnS NCs were prepared using a nucleation doping approach with the tuning of Mn and Ag levels in their synthesis. The optical properties of Mn:AZIS/ZnS NCs are found to be significantly affected by Ag and Mn levels. Specifically, more Ag and Mn atoms in Mn:AZIS/ZnS NCs cause their fluorescence red-shift, and as the Ag or Mn level reaches a high threshold, the fluorescence lifetime of Mn:AZIS/ZnS NC has a significant drop. The reasons for the effects of Mn and Ag levels on NC optical properties were explored and discussed. Through this study, it is also found that with certain Ag and Mn levels in synthesis, some Mn:AZIS/ZnS NCs present optimal optical properties including high brightness (QY > 40%), long fluorescence lifetime (> 1.2 ms), low energy for excitation (excitable at 405 nm), and no reabsorption. The feasibility of the optimized NCs for time-gated fluorescence measurement using a portable/compact instrument was further demonstrated, which indicates the application potential of the NCs in time-gated biosensing including point-of-care testing. Notably, this study also discloses that Mn:AZIS/ZnS NCs with different lifetimes can be achieved by tuning Mn and Ag levels in synthesis, which may further broaden the applications of Mn:AZIS/ZnS NCs in multiplexing detection/measurement.

2.
J Alloys Compd ; 725: 1077-1083, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29242679

RESUMO

In this work, Mn doped AIZS/ZnS (Mn:AIZS/ZnS) nanocrystals (NCs) have been synthesized in an approach using heat-up and drop-wise addition of precursors. On the basis of the characterization of these doped NCs on their optical properties and materials, it is found that: (1) as more Mn atoms are doped into NCs, the doped NCs present photoluminescence (PL) red-shift and quantum yield quenching; (2) the doped NCs possess a short PL lifetime in tens of microseconds and a long PL lifetime in hundreds of microseconds, and the short lived PL is more dominant than the long lived one; and (3) the doped NCs present a reversible PL thermal quenching in a range from room temperature to 170°C. Possible PL mechanisms of these NCs were discussed by analyzing their time-resolved PL spectra and thermal stability.

3.
Front Phys ; 82021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33816457

RESUMO

In this work, a time-gated immunoassay platform using low-energy excitable and fluorescence long-lived Mn:AgZnInS/ZnS nanocrystals as signal transducers was developed and applied to the detection of the capsular polysaccharide (CPS) of Burkholderia pseudomallei, a Gram-negative bacterium that is the causative agent of melioidosis. CPS is a high molecular weight antigen displayed and is shed from the outer membrane of B. pseudomallei. The immunoassay using the time-gated platform presents a limit of detection at around 23 pg/ml when CPS is spiked in human serum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA