RESUMO
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Assuntos
Cocaína , Corpo Estriado , Glicômica , Metanfetamina , Camundongos Endogâmicos C57BL , Proteômica , Animais , Cocaína/farmacologia , Metanfetamina/farmacologia , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Camundongos , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Proteoma/metabolismoRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the on-going global pandemic of coronavirus disease 2019 (COVID-19) that continues to pose a significant threat to public health worldwide. SARS-CoV-2 encodes four structural proteins namely membrane, nucleocapsid, spike, and envelope proteins that play essential roles in viral entry, fusion, and attachment to the host cell. Extensively glycosylated spike protein efficiently binds to the host angiotensin-converting enzyme 2 initiating viral entry and pathogenesis. Reverse transcriptase polymerase chain reaction on nasopharyngeal swab is the preferred method of sample collection and viral detection because it is a rapid, specific, and high-throughput technique. Alternate strategies such as proteomics and glycoproteomics-based mass spectrometry enable a more detailed and holistic view of the viral proteins and host-pathogen interactions and help in detection of potential disease markers. In this review, we highlight the use of mass spectrometry methods to profile the SARS-CoV-2 proteome from clinical nasopharyngeal swab samples. We also highlight the necessity for a comprehensive glycoproteomics mapping of SARS-CoV-2 from biological complex matrices to identify potential COVID-19 markers.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Proteômica , Espectrometria de Massas , NasofaringeRESUMO
Ion mobility-mass spectrometry (IM-MS) is a powerful analytical tool for structural characterization. IM measurement provides collision cross section (CCS) values that facilitate analyte identification. While CCS values can be directly calculated from mobility measurements obtained using drift tube ion mobility spectrometry (DT-IMS), this method has limited mobility resolution due to the practical constraints on the length of the ion drift path. Consequently, DT-IMS cannot differentiate analytes with similar mobilities or resolve fine mobility features of individual ions. Cyclic IMS (cIMS) instruments leverage a cyclic path enabled by traveling wave ion mobility (TWIM) technology and offer increased mobility solution to address this challenge. While TWIM devices must first be calibrated to enable CCS measurements, current calibration strategies are primarily tailored for single-pass analyses. This preference is partly attributed to the challenges associated with multipass calibration methods, which require both calibrants and analytes to experience the same number of passes. Achieving this consistency can be complicated due to factors like peak splitting and diffusion, and may not be feasible for online IM-MS analyses. A recent report employed average ion velocities obtained from multiple measurements under different separation pathlengths as a path length-independent metric for CCS calibration. However, the ability to exploit this averaging approach is limited by observed variation in ion drift time/velocity in these measurements. In this study, we introduce a novel calibration strategy designed for multipass cIMS analyses, directly targeting the root cause for the path length- and mobility-dependent variations in ion drift time. With this method, we demonstrate that CCS values derived from multipass measurements closely align with those obtained from single-pass analyses, with an average deviation of 0.1%. We apply this method to characterize four isomeric trisaccharides. Our approach not only results in excellent agreement between our measured cIMSCCS values and the reported DTCCS values, with an average difference of only 0.5%, but also allows us to effectively identify subtle mobility characteristics of each compound and determine their respective CCS values. This level of detail and accuracy was previously unattainable using DT-IMS or single-pass cIMS measurements. We developed an algorithm for reconstructing arrival time distribution in cases where wrap-around has resulted in peak splitting. Collectively, the new calibration strategy and the reconstruction procedure maintain reproducibility and precision in CCS measurements while largely eliminating the need for meticulous selection of separation times. We expect that our method will empower researchers to harness the high mobility resolution offered by multipass cIMS analyses without compromising the accuracy of CCS measurement, making it appropriate for straightforward use across a wide range of applications.
RESUMO
Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides. HeExD produced extensive fragmentation within both the glycan and the peptide, including A-/B-/C-/Y-/Z-/X-ions from the glycan motif and a-/b-/c-/x-/y-/z-type peptide fragments (with or without the glycan). The intensity of cross-ring cleavage and backbone fragments retaining the intact glycan was highly dependent on the electron energy. Among the four electron energy levels investigated, electronic excitation dissociation (EED) provided the most comprehensive structural information, yielding a complete series of glycosidic fragments for accurate glycan topology determination, a wealth of cross-ring fragments for linkage definition, and the most extensive peptide backbone fragments for accurate peptide sequencing and glycosylation site localization. The glycan fragments observed in the EED spectrum correlated well with the fragmentation patterns observed in EED MS/MS of the released glycans. The advantages of EED over higher-energy collisional dissociation (HCD), stepped collision energy HCD (sceHCD), and electron-transfer/higher-energy collisional dissociation (EThcD) were demonstrated for the characterization of a glycopeptide bearing a biantennary disialylated glycan. EED can produce a complete peptide backbone and glycan sequence coverage even for doubly protonated precursors. The exceptional performance of heExD MS/MS, particularly EED MS/MS, in site-specific detailed glycan characterization on an Orbitrap-Omnitrap hybrid instrument presents a novel option for in-depth glycosylation analysis.
Assuntos
Glicopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Elétrons , Peptídeos/química , Polissacarídeos/químicaRESUMO
Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.
Assuntos
Glicopeptídeos/sangue , Glicoproteínas/sangue , Informática/métodos , Proteoma/análise , Proteômica/métodos , Pesquisadores/estatística & dados numéricos , Software , Glicosilação , Humanos , Proteoma/metabolismo , Espectrometria de Massas em TandemRESUMO
The brain extracellular matrix (ECM) is a highly glycosylated environment and plays important roles in many processes including cell communication, growth factor binding, and scaffolding. The formation of structures such as perineuronal nets (PNNs) is critical in neuroprotection and neural plasticity, and the formation of molecular networks is dependent in part on glycans. The ECM is also implicated in the neuropathophysiology of disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and Schizophrenia (SZ). As such, it is of interest to understand both the proteomic and glycomic makeup of healthy and diseased brain ECM. Further, there is a growing need for site-specific glycoproteomic information. Over the past decade, sample preparation, mass spectrometry, and bioinformatic methods have been developed and refined to provide comprehensive information about the glycoproteome. Core ECM molecules including versican, hyaluronan and proteoglycan link proteins, and tenascin are dysregulated in AD, PD, and SZ. Glycomic changes such as differential sialylation, sulfation, and branching are also associated with neurodegeneration. A more thorough understanding of the ECM and its proteomic, glycomic, and glycoproteomic changes in brain diseases may provide pathways to new therapeutic options.
RESUMO
Success of mass spectrometry characterization of the proteome of single cells allows us to gain a greater understanding than afforded by transcriptomics alone but requires clear understanding of the tradeoffs between analytical throughput and precision. Recent advances in mass spectrometry acquisition techniques, including updated instrumentation and sample preparation, have improved the quality of peptide signals obtained from single cell data. However, much of the proteome remains uncharacterized, and higher throughput techniques often come at the expense of reduced sensitivity and coverage, which diminish the ability to measure proteoform heterogeneity, including splice variants and post-translational modifications, in single cell data analysis. Here, we assess the growing body of ultrasensitive single-cell approaches and their tradeoffs as researchers try to balance throughput and precision in their experiments.
Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Peptídeos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-TraducionalRESUMO
Amino acid sequences of immunodominant domains of hemagglutinin (HA) on the surface of influenza A virus (IAV) evolve rapidly, producing viral variants. HA mediates receptor recognition, binding and cell entry, and serves as the target for IAV vaccines. Glycosylation, a post-translational modification that places large branched polysaccharide molecules on proteins, can modulate the function of HA and shield antigenic regions allowing for viral evasion from immune responses. Our previous work showed that subtle changes in the HA protein sequence can have a measurable change in glycosylation. Thus, being able to quantitatively measure glycosylation changes in variants is critical for understanding how HA function may change throughout viral evolution. Moreover, understanding quantitatively how the choice of viral expression systems affects glycosylation can help in the process of vaccine design and manufacture. Although IAV vaccines are most commonly expressed in chicken eggs, cell-based vaccines have many advantages, and the adoption of more cell-based vaccines would be an important step in mitigating seasonal influenza and protecting against future pandemics. Here, we have investigated the use of data-independent acquisition (DIA) mass spectrometry for quantitative glycoproteomics. We found that DIA improved the sensitivity of glycopeptide detection for four variants of A/Switzerland/9715293/2013 (H3N2): WT and mutant, each expressed in embryonated chicken eggs and Madin-Darby canine kidney cells. We used the Tanimoto similarity metric to quantify changes in glycosylation between WT and mutant and between egg-expressed and cell-expressed virus. Our DIA site-specific glycosylation similarity comparison of WT and mutant expressed in eggs confirmed our previous analysis while achieving greater depth of coverage. We found that sequence variations and changing viral expression systems affected distinct glycosylation sites of HA. Our methods can be applied to track glycosylation changes in circulating IAV variants to bolster genomic surveillance already being done, for a more complete understanding of IAV evolution.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Cães , Animais , Humanos , Vírus da Influenza A/metabolismo , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Espectrometria de MassasRESUMO
Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).
Assuntos
Neoplasias Encefálicas , Glioblastoma , Agrina/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato , HumanosRESUMO
Humans express seven heparan sulfate (HS) 3-O-sulfotransferases that differ in substrate specificity and tissue expression. Although genetic studies have indicated that 3-O-sulfated HS modulates many biological processes, ligand requirements for proteins engaging with HS modified by 3-O-sulfate (3-OS) have been difficult to determine. In particular, the context in which the 3-OS group needs to be presented for binding is largely unknown. We describe herein a modular synthetic approach that can provide structurally diverse HS oligosaccharides with and without 3-OS. The methodology was employed to prepare 27 hexasaccharides that were printed as a glycan microarray to examine ligand requirements of a wide range of HS-binding proteins. The binding selectivity of antithrombin-III (AT-III) compared well with anti-Factor Xa activity supporting robustness of the array technology. Many of the other examined HS-binding proteins required an IdoA2S-GlcNS3S6S sequon for binding but exhibited variable dependence for the 2-OS and 6-OS moieties, and a GlcA or IdoA2S residue neighboring the central GlcNS3S. The HS oligosaccharides were also examined as inhibitors of cell entry by herpes simplex virus type 1, which, surprisingly, showed a lack of dependence of 3-OS, indicating that, instead of glycoprotein D (gD), they competitively bind to gB and gC. The compounds were also used to examine substrate specificities of heparin lyases, which are enzymes used for depolymerization of HS/heparin for sequence determination and production of therapeutic heparins. It was found that cleavage by lyase II is influenced by 3-OS, while digestion by lyase I is only affected by 2-OS. Lyase III exhibited sensitivity to both 3-OS and 2-OS.
Assuntos
Células Epiteliais/metabolismo , Heparina Liase/metabolismo , Heparitina Sulfato/metabolismo , Herpesvirus Humano 1/metabolismo , Sulfatos/metabolismo , Sulfotransferases/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Antitrombina III/química , Antitrombina III/genética , Antitrombina III/metabolismo , Sítios de Ligação , Ligação Competitiva , Sequência de Carboidratos , Linhagem Celular , Córnea/citologia , Córnea/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Fator Xa/química , Fator Xa/genética , Fator Xa/metabolismo , Inibidores do Fator Xa/química , Inibidores do Fator Xa/metabolismo , Expressão Gênica , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Heparina Liase/química , Heparina Liase/genética , Heparitina Sulfato/química , Herpesvirus Humano 1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Análise em Microsséries , Ligação Proteica , Proteólise , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato , Sulfatos/química , Sulfotransferases/química , Sulfotransferases/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.
Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas , Vírus da Influenza A Subtipo H7N3/metabolismo , Glicoproteínas/análise , Glicopeptídeos/análise , Polissacarídeos/metabolismoRESUMO
Advances in mass spectrometry instrumentation, methods development, and bioinformatics have greatly improved the ease and accuracy of site-specific, quantitative glycoproteomics analysis. Data-dependent acquisition is the most popular method for identification and quantification of glycopeptides; however, complete coverage of glycosylation site glycoforms remains elusive with this method. Targeted acquisition methods improve the precision and accuracy of quantification, but at the cost of throughput and discoverability. Data-independent acquisition (DIA) holds great promise for more complete and highly quantitative site-specific glycoproteomics analysis, while maintaining the ability to discover novel glycopeptides without prior knowledge. We review additional features that can be used to increase selectivity and coverage to the DIA workflow: retention time modeling, which would simplify the interpretation of complex tandem mass spectra, and ion mobility separation, which would maximize the sampling of all precursors at a giving chromatographic retention time. The instrumentation and bioinformatics to incorporate these features into glycoproteomics analysis exist. These improvements in quantitative, site-specific analysis will enable researchers to assess glycosylation similarity in related biological systems, answering new questions about the interplay between glycosylation state and biological function.
Assuntos
Glicoproteínas , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Glicopeptídeos/análise , Glicoproteínas/química , Glicosilação , Espectrometria de Massas em Tandem/métodosRESUMO
The 2022 Nobel Prize in Chemistry recognized the development of biorthogonal chemical ligation reactions known as click chemistry in biomedicine. This concept has catalyzed significant progress in sensing and diagnosis, chemical biology, materials chemistry, and drug discovery and delivery. In proteomics, the ability to incorporate a click tag into proteins has propelled development of powerful new methods for selective enrichment of protein complexes that inform understanding of protein networks. It also has had a strong influence on the ability to enrich for protein post-translational modifications. This feature article summarizes the impacts of biorthogonal click chemistry on proteomics.
Assuntos
Química Click , Prêmio Nobel , Química Click/métodos , Proteínas , Processamento de Proteína Pós-Traducional , Proteômica/métodos , QuímicaRESUMO
Proteoglycans are a small but diverse family of proteins that play a wide variety of roles at the cell surface and in the extracellular matrix. In addition to their glycosaminoglycan (GAG) chains, they are N- and O-glycosylated. All of these types of glycosylation are crucial to their function but present a considerable analytical challenge. We describe the combination of serial proteolysis followed by the application of higher-energy collisional dissociation (HCD) and electron transfer/higher-energy collisional dissociation (EThcD) to optimize protein sequence coverage and glycopeptide identification from proteoglycans. In many cases, the use of HCD alone allows the identification of more glycopeptides. However, the localization of glycoforms on multiply glycosylated peptides has remained elusive. We demonstrate the use of EThcD for the confident assignment of glycan compositions on multiply glycosylated peptides. Dense glycosylation on proteoglycans is key to their biological function; thus, developing tools to identify and quantify doubly glycosylated peptides is of interest. Additionally, glycoproteomics searches identify glycopeptides in otherwise poorly covered regions of proteoglycans. The development of these and other analytical tools may permit glycoproteomic similarity comparisons in biological samples.
Assuntos
Matriz Extracelular , Proteoglicanas , Proteólise , Glicosaminoglicanos , GlicopeptídeosRESUMO
Complex protein glycosylation occurs through biosynthetic steps in the secretory pathway that create macro- and microheterogeneity of structure and function. Required for all life forms, glycosylation diversifies and adapts protein interactions with binding partners that underpin interactions at cell surfaces and pericellular and extracellular environments. Because these biological effects arise from heterogeneity of structure and function, it is necessary to measure their changes as part of the quest to understand nature. Quite often, however, the assumption behind proteomics that posttranslational modifications are discrete additions that can be modeled using the genome as a template does not apply to protein glycosylation. Rather, it is necessary to quantify the glycosylation distribution at each glycosite and to aggregate this information into a population of mature glycoproteins that exist in a given biological system. To date, mass spectrometric methods for assigning singly glycosylated peptides are well-established. But it is necessary to quantify glycosylation heterogeneity accurately in order to gauge the alterations that occur during biological processes. The task is to quantify the glycosylated peptide forms as accurately as possible and then apply appropriate bioinformatics algorithms to the calculation of micro- and macro-similarities. In this review, we summarize current approaches for protein quantification as they apply to this glycoprotein similarity problem.
Assuntos
Glicopeptídeos/análise , Glicoproteínas/análise , Humanos , Espectrometria de Massas , Proteômica/métodosRESUMO
The sulfated glycosaminoglycans (GAGs) are long, linear polysaccharide chains that are typically found as the glycan portion of proteoglycans. These GAGs are characterized by repeating disaccharide units with variable sulfation and acetylation patterns along the chain. GAG length and modification patterns have profound impacts on growth factor signaling mechanisms central to numerous physiological processes. Electron activated dissociation tandem mass spectrometry is a very effective technique for assigning the structures of GAG saccharides; however, manual interpretation of the resulting complex tandem mass spectra is a difficult and time-consuming process that drives the development of computational methods for accurate and efficient sequencing. We have recently published GAGfinder, the first peak picking and elemental composition assignment algorithm specifically designed for GAG tandem mass spectra. Here, we present GAGrank, a novel network-based method for determining GAG structure using information extracted from tandem mass spectra using GAGfinder. GAGrank is based on Google's PageRank algorithm for ranking websites for search engine output. In particular, it is an implementation of BiRank, an extension of PageRank for bipartite networks. In our implementation, the two partitions comprise every possible sequence for a given GAG composition and the tandem MS fragments found using GAGfinder. Sequences are given a higher ranking if they link to many important fragments. Using the simulated annealing probabilistic optimization technique, we optimized GAGrank's parameters on ten training sequences. We then validated GAGrank's performance on three validation sequences. We also demonstrated GAGrank's ability to sequence isomeric mixtures using two mixtures at five different ratios.
Assuntos
Glicosaminoglicanos/química , Software , Algoritmos , Modelos Teóricos , Espectrometria de Massas em TandemRESUMO
A library of 23 synthetic heparan sulfate (HS) oligosaccharides, varying in chain length, types, and positions of modifications, was used to analyze the substrate specificities of heparin lyase III enzymes from both Flavobacterium heparinum and Bacteroides eggerthii. The influence of specific modifications, including N-substitution, 2-O sulfation, 6-O sulfation, and 3-O sulfation on lyase III digestion was examined systematically. It was demonstrated that lyase III from both sources can completely digest oligosaccharides lacking O-sulfates. 2-O Sulfation completely blocked cleavage at the corresponding site; 6-O and 3-O sulfation on glucosamine residues inhibited enzyme activity. We also observed that there are differences in substrate specificities between the two lyase III enzymes for highly sulfated oligosaccharides. These findings will facilitate obtaining and analyzing the functional sulfated domains from large HS polymer, to better understand their structure/function relationships in biological processes.
Assuntos
Heparitina Sulfato , Oligossacarídeos , Heparina/química , Heparina Liase/química , Heparitina Sulfato/química , Oligossacarídeos/química , Especificidade por Substrato , SulfatosRESUMO
The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative to standardize the reporting of glycoanalytical methods and to assess their reproducibility. To date, the MIRAGE Commission has published several reporting guidelines that describe what information should be provided for sample preparation methods, mass spectrometry methods, liquid chromatography analysis, exoglycosidase digestions, glycan microarray methods, and nuclear magnetic resonance methods. Here, we present the first version of reporting guidelines for glyco(proteo)mics analysis by capillary electrophoresis (CE) for standardized and high-quality reporting of experimental conditions in the scientific literature. The guidelines cover all aspects of a glyco(proteo)mics CE experiment including sample preparation, CE operation mode (CZE, CGE, CEC, MEKC, cIEF, cITP), instrument configuration, capillary separation conditions, detection, data analysis, and experimental descriptors. These guidelines are linked to other MIRAGE guidelines and are freely available through the project website https://www.beilstein-institut.de/en/projects/mirage/guidelines/#ce_analysis (doi:10.3762/mirage.7).
Assuntos
Eletroforese Capilar , Glicômica , Cromatografia Líquida , Glicômica/métodos , Espectrometria de Massas/métodos , Reprodutibilidade dos TestesRESUMO
Heparan sulfate (HS) is a linear polysaccharide covalently attached to proteoglycans on cell surfaces and within extracellular matrices in all animal tissues. Many biological processes are triggered by the interactions among HS binding proteins and short structural motifs in HS chains. The determination of HS oligosaccharide structures using liquid chromatography-mass spectrometry (LC-MS) is made challenging by the existence of positional sulfation and acetylation isomers. The determination of uronic acid epimer positions is even more challenging. While hydrophilic interaction liquid chromatography (HILIC) separates HS saccharides based on their composition, there is a very limited resolution of positional isomers. This lack of resolution places a burden on the tandem mass spectrometry step for assigning saccharide isomers. In this work, we explored the use of the ion mobility dimension to separate HS saccharide isomers based on molecular shape in the gas phase. We showed that the combination of HILIC and cyclic ion mobility mass spectrometry (cIM-MS) was extremely useful for resolving HS positional isomers including uronic acid epimers and sulfate positions. Furthermore, HILIC-cIM-MS differentiated multicomponent HS isomeric saccharide mixtures. In summary, HILIC-cIM-MS provided high-quality data for analysis of HS oligosaccharide isomeric mixtures that may prove useful in the discovery of new structural motifs for HS binding proteins and for the targeted quality control analysis of commercial HS products.
Assuntos
Heparitina Sulfato , Espectrometria de Massas em Tandem , Cromatografia Líquida , Heparitina Sulfato/química , Interações Hidrofóbicas e Hidrofílicas , Oligossacarídeos/químicaRESUMO
Extracellular matrix (ECM) proteins, collectively known as the matrisome, include collagens, glycoproteins, and proteoglycans. Alterations in the matrisome have been implicated in the neurodegenerative pathologies including Parkinson's disease (PD). In this work, we utilized our previously published PD and control proteomics data from human prefrontal cortex and focused our analysis on the matrisome. Among matrisome proteins, we observed a significant enrichment in the expression of type I collagen in PD vs. control samples. We then performed histological analysis on the same samples used for proteomics study, and examined collagen expression using picrosirius red staining. Interestingly, we observed similar trends in collagen abundance in PD vs. control as in our matrisome analysis; thus, this and other histological analyses will be useful as a complementary technique in the future to study the matrisome in PD with a larger cohort, and it may aid in choosing regions of interest for proteomic analysis. Additionally, collagen hydroxyprolination was less variable in PD compared to controls. Glycoproteomic changes in matrisome molecules were also observed in PD relative to aged individuals, especially related to type VI collagen and versican. We further examined the list of differentially expressed matrisome molecules using network topology-based analysis and found that angiogenesis indicated by alterations in decorin and several members of the collagen family was affected in PD. These findings collectively identified matrisome changes associated with PD; further studies with a larger cohort are required to validate the current results.