Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 150: 107561, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38936050

RESUMO

The antifungal bioactivity potential of the organic extract of silk tree (Albizia kalkora) was investigated in the current study. The crude extracts of A. kalkora and methanol, n-hexane, chloroform, and ethyl acetate fractions were prepared. The antifungal activity of obtained fractions of A. kalkora was studied at different concentrations ranging from 0.39-50 µg/mL. Dimethyl sulfoxide (DMSO) was taken as a toxicity control, whereas thiophanate methyl (TM) as a positive control. All the fractions significantly reduced the FOL growth (methanolic: 9.49-94.93 %, n-hexane: 11.12-100 %, chloroform: 20.96-91.41 %, and ethyl acetate: 18.75-96.70 %). The n-hexane fraction showed 6.25 µg/mL MIC as compared to TM with 64 µg/mL MIC. The non-polar (n-hexane) fraction showed maximum antifungal bioactivity against FOL in comparison with chloroform, methanol, and ethyl acetate fractions. GC/MS analysis exhibited that the n-hexane fraction contained hexadecanoic acid, 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid, bis(2-ethylhexyl) phthalate, methyl stearate, and [1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylic acid. The results of in vitro antifungal inhibition were further reinforced by molecular docking analysis. Five virulence proteins of FOL i.e., pH-responsive PacC transcription factor (PACC), MeaB, TOR; target of rapamycin (FMK1), Signal transducing MAP kinase kinase (STE-STE7), and High Osmolarity Glycerol 1(HOG1) were docked with identified phytocompounds in the n-hexane fraction by GC/MS analysis. MEAB showed maximum binding affinities with zinnimide (-12.03 kcal/mol), HOG1 and FMK1with α-Tocospiro-B (-11.51 kcal/mol) and (-10.55 kcal/mol) respectively, STE-STE7 with docosanoic acid (-11.31 kcal/mol), and PACC with heptadecanoic acid (-9.88 kcal/mol) respectively with strong hydrophobic or hydrophilic interactions with active pocket residues. In conclusion, the n-hexane fraction of the A. kalkora can be used to manage FOL.

2.
Bioorg Chem ; 141: 106868, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37738768

RESUMO

The identification of effective and druggable cholinesterase inhibitors to treat progressive neurodegenerative Alzheimer's disorder remains a continuous drug discovery hunt. In this perspective, the present study investigates the design and discovery of pyrimidine-morpholine hybrids (5a-l) as potent cholinesterase inhibitors. Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction was employed to introduce the structural diversity on the pyrimidine heterocyclic core. A range of commercially available boronic acids was successfully coupled showing a high functional group tolerance. In vitro cholinesterase inhibitory potential using Ellman's method revealed significantly strong potency. Compound 5h bearing a meta-tolyl substituent at 2-position of pyrimidine ring emerged as a lead candidate against AChE with an inhibitory potency of 0.43 ± 0.42 µM, ∼38-fold stronger value than neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 5h also showed the lead inhibition against BuChE with an IC50 value of 2.5 ± 0.04 µM. The kinetics analysis of 5h revealed the non-competitive mode of inhibition against AChE whereas computational modelling results of potent leads depicted diverse contacts with the binding site amino acid residues. Molecular dynamics simulations revealed the stability of biomolecular system, while, ADME analysis demonstrated druglikeness behaviour of potent compounds. Overall, the investigated pyrimidine-morpholine scaffold presented a remarkable potential to be developed as efficacious anti-Alzheimer's drugs.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Estrutura Molecular , Acetilcolinesterase/metabolismo , Morfolinas/farmacologia , Morfolinas/química , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
3.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838848

RESUMO

The development of new drugs/drug candidates for medical treatment remains an exciting but challenging process as only a limited number of synthetic compounds fit well into the discovery and development process after multiple experiments and screening for their preclinical properties [...].

4.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375404

RESUMO

Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Despite the existence of various therapeutic options, NSCLC is still a major health concern due to its aggressive nature and high mutation rate. Consequently, HER3 has been selected as a target protein along with EGFR because of its limited tyrosine kinase activity and ability to activate PI3/AKT pathway responsible for therapy failure. We herein used a BioSolveIT suite to identify potent inhibitors of EGFR and HER3. The schematic process involves screening of databases for constructing compound library comprising of 903 synthetic compounds (602 for EGFR and 301 for HER3) followed by pharmacophore modeling. The best docked poses of compounds with the druggable binding site of respective proteins were selected according to pharmacophore designed by SeeSAR version 12.1.0. Subsequently, preclinical analysis was performed via an online server SwissADME and potent inhibitors were selected. Compound 4k and 4m were the most potent inhibitors of EGFR while 7x effectively inhibited the binding site of HER3. The binding energies of 4k, 4m, and 7x were -7.7, -6.3 and -5.7 kcal/mol, respectively. Collectively, 4k, 4m and 7x showed favorable interactions with the most druggable binding sites of their respective proteins. Finally, in silico pre-clinical testing by SwissADME validated the non-toxic nature of compounds 4k, 4m and 7x providing a promising treatment option for chemoresistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
5.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985595

RESUMO

Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Alcaptonúria , Ocronose , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/genética , Alcaptonúria/metabolismo , Simulação de Acoplamento Molecular , Ocronose/tratamento farmacológico , Ácido Homogentísico/metabolismo
6.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903376

RESUMO

Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Quinolinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Colinesterases/metabolismo , Quinolinas/uso terapêutico , Relação Estrutura-Atividade , Estrutura Molecular
7.
AAPS PharmSciTech ; 24(6): 168, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552378

RESUMO

The expanding global cancer burden necessitates a comprehensive strategy to promote possible therapeutic interventions. Nanomedicine is a cutting-edge approach for treating cancer with minimal adverse effects. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Eugenol (EGN) were synthesized and evaluated for their anticancer activity against breast cancer cells (MCF-7). The physical, pharmacological, and molecular docking studies were used to characterize these nanoparticles. EGN had been effectively entrapped into hybrid NPs (84 ± 7%). The EGN-ChAgNPs had a diameter of 128 ± 14 nm, a PDI of 0.472 ± 0.118, and a zeta potential of 30.58 ± 6.92 mV. Anticancer activity was measured in vitro using an SRB assay, and the findings revealed that EGN-ChAgNPs demonstrated stronger anticancer activity against MCF-7 cells (IC50 = 14.87 ± 5.34 µg/ml) than pure EGN (30.72 ± 4.91 µg/ml). To support initial cytotoxicity findings, advanced procedures such as cell cycle analysis and genotoxicity were performed. Tumor weight reduction and survival rate were determined using different groups of mice. Both survival rates and tumor weight reduction were higher in the EGN-ChAgNPs (12.5 mg/kg) treated group than in the pure EGN treated group. Based on protein-ligand interactions, it might be proposed that eugenol had a favorable interaction with Aurora Kinase A. It was observed that C9 had the highest HYDE score of any sample, measuring at -6.8 kJ/mol. These results, in conjunction with physical and pharmacological evaluations, implies that EGN-ChAgNPs may be a suitable drug delivery method for treating breast cancer in a safe and efficient way.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Animais , Camundongos , Quitosana/farmacologia , Eugenol/farmacologia , Prata/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia
8.
Bioorg Chem ; 129: 106137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108590

RESUMO

Pomegranate (Punica granatum L.) extract has been reported to inhibit cholinesterase and the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1); however, most of its constituents' potential inhibition of these enzymes remains unknown. Thus, we investigated the anti-Alzheimer's disease (anti-AD) potential of 16 ellagitannin and gallotannin, and nine anthocyanin derivatives' inhibition of BACE1, AChE, and BChE, and gallagic acid inhibited both the best. Further, a kinetic study identified different modes of inhibition, and a molecular docking simulation revealed that active compounds inhibited these three enzymes with low binding energy through hydrophilic and hydrophobic interactions in the active site cavities. Gallagic acid and castalagin decreased Aß peptides secretion from neuroblastoma cells that overexpressed human ß-amyloid precursor protein significantly by 10 µM. Further, treatment with gallagic acid and castalagin reduced BACE1 and APPsß expression levels significantly without affecting amyloid precursor protein (APP) levels in the amyloidogenic pathway. Co-incubation of Aß42 with gallagic acid reduced Aß42-induced intracellular reactive oxygen species (ROS) production significantly. Our results suggest that pomegranate constituents, specifically gallagic acid, may be useful in developing therapeutic treatment modalities for AD.


Assuntos
Doença de Alzheimer , Punica granatum , Humanos , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/uso terapêutico , Simulação de Acoplamento Molecular , Colinesterases , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo
9.
Bioorg Chem ; 119: 105545, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915286

RESUMO

The discovery of life-changing medicines continues to be the driving force for the rapid exploration and expansion of chemical space, enabling access to innovative small molecules of medicinal importance. These small molecules remain the backbone for modern drug discovery. In this context, the treatment of ureolytic bacterial infections inspires the identification of potent and effective inhibitors of urease, a promising and highly needed target for H. pylori eradication. The present study explores the evaluation of sulfamate derivatives for the inhibition of urease enzyme. The tested compounds showed remarkable inhibitory effect and high level of potency. Compound 1q emerged as the lead inhibitor with an IC50 value of 0.062 ± 0.001 µM, ∼360-fold more potent than thiourea (IC50 = 22.31 ± 0.031 µM). The assessment of various contributing factors towards the inhibition profile allowed for the establishment of diverse structure-activity relationships. Kinetics studies revealed the competitive mode of inhibition of compound 1q while molecular modeling analysis identified various crucial binding interactions with ARG609, ARG439, HIS519, HIS492, HIS593, ALA440, and ALA636 in the active pocket of the enzyme. Finally, the calculated pharmacokinetic properties suggest a promising profile of our potent sulfamate-based urease inhibitors.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Ácidos Sulfônicos/farmacologia , Urease/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Helicobacter pylori/enzimologia , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Urease/metabolismo
10.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408532

RESUMO

This present work is designed to evaluate the anti-diabetic potential of 22 ginsenosides via the inhibition against rat lens aldose reductase (RLAR), and human recombinant aldose reductase (HRAR), using DL-glyceraldehyde as a substrate. Among the ginsenosides tested, ginsenoside Rh2, (20S) ginsenoside Rg3, (20R) ginsenoside Rg3, and ginsenoside Rh1 inhibited RLAR significantly, with IC50 values of 0.67, 1.25, 4.28, and 7.28 µM, respectively. Moreover, protopanaxadiol, protopanaxatriol, compound K, and ginsenoside Rh1 were potent inhibitors of HRAR, with IC50 values of 0.36, 1.43, 2.23, and 4.66 µM, respectively. The relationship of structure-activity exposed that the existence of hydroxyl groups, linkages, and their stereo-structure, as well as the sugar moieties of the ginsenoside skeleton, represented a significant role in the inhibition of HRAR and RLAR. Additional, various modes of ginsenoside inhibition and molecular docking simulation indicated negative binding energies. It was also indicated that it has a strong capacity and high affinity to bind the active sites of enzymes. Further, active ginsenosides suppressed sorbitol accumulation in rat lenses under high-glucose conditions, demonstrating their potential to prevent sorbitol accumulation ex vivo. The findings of the present study suggest the potential of ginsenoside derivatives for use in the development of therapeutic or preventive agents for diabetic complications.


Assuntos
Aldeído Redutase , Ginsenosídeos , Animais , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Ratos , Sorbitol , Relação Estrutura-Atividade
11.
Molecules ; 27(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35630825

RESUMO

Voriconazole (VRC) is a broad-spectrum antifungal agent belonging to BCS class II (biopharmaceutical classification system). Despite many efforts to enhance its solubility, this primary issue still remains challenging for formulation scientists. Transethosomes (TELs) are one of the potential innovative nano-carriers for improving the solubility and permeation of poorly soluble and permeable drugs. We herein report voriconazole-loaded transethosomes (VRCT) fabricated by the cold method and followed by their incorporation into carbopol 940 as a gel. The prepared VRCT were evaluated for % yield, % entrapment efficiency (EE), surface morphology, possible chemical interaction, particle size, zeta potential, and polydispersity index (PDI). The optimized formulation had a particle size of 228.2 nm, a zeta potential of -26.5 mV, and a PDI of 0.45 with enhanced % EE. Rheology, spreadability, extrudability, in vitro release, skin permeation, molecular docking, antifungal, and antileishmanial activity were also assessed for VRCT and VRC loaded transethosomal gel (VTEG). Ex-vivo permeation using rat skin depicted a transdermal flux of 22.8 µg/cm2/h with enhanced efficiency up to 4-fold. A two-fold reduction in inhibitory as well as fungicidal concentration was observed against various fungal strains by VRCT and VTEG besides similar results against L-donovani. The development of transethosomal formulation can serve as an efficient drug delivery system through a topical route with enhanced efficacy and better patient compliance.


Assuntos
Antifúngicos , Antiprotozoários , Animais , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Portadores de Fármacos/química , Simulação de Acoplamento Molecular , Ratos , Absorção Cutânea , Voriconazol/farmacologia
12.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807470

RESUMO

In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs' antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichiacoli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future.


Assuntos
Acer , Bacillus , Nanopartículas Metálicas , Antibacterianos , Escherichia coli , Células HeLa , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Folhas de Planta/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Molecules ; 26(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34834081

RESUMO

The rapidly growing global burden of cancer poses a major challenge to public health and demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology approaches with various pharmacological properties offer efficacious clinical outcomes. The use of new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A (WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped (85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demonstrated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of -39.02 ± 5.71 mV with a polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that WFA-NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM), as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death. The anticancer activity of WFA-NS was further determined in vivo and results were compared to cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar and nonpolar) and helping with the attractive delayed-release features of the formulation. Collectively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment, and opened up new avenues for increasing the efficacy of natural product-derived medications.


Assuntos
Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Neoplasias , Animais , Varredura Diferencial de Calorimetria , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Withania/química , Vitanolídeos/química , Vitanolídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513837

RESUMO

Alzheimer's disease (AD), a progressive neurodegenerative disorder, characterized by central cognitive dysfunction, memory loss, and intellectual decline poses a major public health problem affecting millions of people around the globe. Despite several clinically approved drugs and development of anti-Alzheimer's heterocyclic structural leads, the treatment of AD requires safer hybrid therapeutics with characteristic structural and biochemical properties. In this endeavor, we herein report a microwave-assisted synthesis of a library of quinoline thiosemicarbazones endowed with a piperidine moiety, achieved via the condensation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes and (un)substituted thiosemicarbazides. The target N-heterocyclic products were isolated in excellent yields. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). Anti-Alzheimer potential of the synthesized heterocyclic compounds was evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vitro biochemical assay results revealed several compounds as potent inhibitors of both enzymes. Among them, five compounds exhibited IC50 values less than 20 µM. N-(3-chlorophenyl)-2-((8-methyl-2-(piperidin-1-yl)quinolin-3-yl)methylene)hydrazine carbothioamide emerged as the most potent dual inhibitor of AChE and BChE with IC50 values of 9.68 and 11.59 µM, respectively. Various informative structure-activity relationship (SAR) analyses were also concluded indicating the critical role of substitution pattern on the inhibitory efficacy of the tested derivatives. In vitro results were further validated through molecular docking analysis where interactive behavior of the potent inhibitors within the active pocket of enzymes was established. Quinoline thiosemicarbazones were also tested for their cytotoxicity using MTT assay against HepG2 cells. Among the 26 novel compounds, there were five cytotoxical and 18 showed proliferative properties.


Assuntos
Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Hidrazinas/farmacologia , Tioamidas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Compostos Heterocíclicos/farmacologia , Humanos , Micro-Ondas , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Relação Estrutura-Atividade
15.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770983

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 µM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 µM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer's disease.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinolinas/farmacologia , Tiossemicarbazonas/farmacologia , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/química , Humanos , Modelos Moleculares , Fármacos Neuroprotetores/química , Quinolinas/química , Tiossemicarbazonas/química
16.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771042

RESUMO

Type 2 diabetes mellitus has been a major health issue with increasing morbidity and mortality due to macrovascular and microvascular complications. The urgent need for improved methods to control hyperglycemic complications reiterates the development of innovative preventive and therapeutic treatment strategies. In this perspective, xanthone compounds in the pericarp of the mangosteen fruit, especially α-mangostin (MGN), have been recognized to restore damaged pancreatic ß-cells for optimal insulin release. Therefore, taking advantage of the robust use of nanotechnology for targeted drug delivery, we herein report the preparation of MGN loaded nanosponges for anti-diabetic therapeutic applications. The nanosponges were prepared by quasi-emulsion solvent evaporation method. Physico-chemical characterization of formulated nanosponges with satisfactory outcomes was performed with Fourier transform infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Zeta potential, hydrodynamic diameter, entrapment efficiency, drug release properties, and stability studies at stress conditions were also tested. Molecular docking analysis revealed significant interactions of α-glucosidase and MGN in a protein-ligand complex. The maximum inhibition by nanosponges against α-glucosidase was observed to be 0.9352 ± 0.0856 µM, 3.11-fold higher than acarbose. In vivo studies were conducted on diabetic rats and plasma glucose levels were estimated by HPLC. Collectively, our findings suggest that MGN-loaded nanosponges may be beneficial in the treatment of diabetes since they prolong the antidiabetic response in plasma and improve patient compliance by slowly releasing MGN and requiring less frequent doses, respectively.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Nanoestruturas/química , Xantonas/farmacologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Estreptozocina/administração & dosagem , Xantonas/síntese química , Xantonas/química , alfa-Glucosidases/metabolismo
17.
Bioorg Med Chem Lett ; 30(13): 127238, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386855

RESUMO

We developed a simple and robust method for synthesis of 1,3-oxathiol-2-ylidene benzamides (4a-m) a sporadic class of heterocycles, by reacting freshly prepared aroyl isothiocyanates, with ethyl 2-chloroacetoacetate in presence of N-methylimidazole in dry acetonitrile. The synthesized compounds were explored for their inhibition against alkaline phosphatases and HeLa cancer cell lines. The results suggest that almost all the compounds possess good % inhibition against both enzymes, with compound 4m showing dual inhibition while 4g and 4i as potent and selective inhibitors of TNAP and c-IAP respectively. Structure activity relationship for the active members of series has been carried out based on molecular docking studies. The result of SAR shows the involvement of active inhibitors in H-bonding at various sites with different amino acid residues in addition to secondary metal ion interactions with Zn ions inside the active pocket of the enzyme. The π-π interactions between the 1,3-oxathiole ring and imidazole ring of His321 and His 317 further defines the dual mode of inhibition by compound 4m. These compounds also possess inhibition potential against cervical cell lines in the range of 2.42-69.03% with the maximum inhibition shown by the unsubstituted member 4a compared to the reference drug cisplatin.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bovinos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HeLa , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
Bioorg Chem ; 105: 104425, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33157344

RESUMO

Fused diaza-heterocycles constitute the core structure of numerous bioactive natural products and effective therapeutic drugs. Among them, phthalazines have been recognized as remarkable structural leads in medicinal chemistry due to their wide application in pharmaceutical and agrochemical industries. Accessing such challenging pharmaceutical agents/drug candidates with high chemical complexity through synthetically efficient approaches remains an attractive goal in the contemporary medicinal chemistry and drug discovery arena. In this review, we focus on the recent developments in the synthetic routes towards the generation of phthalazine-based active pharmaceutical ingredients and their biological potential against various targets. The general reaction scope of these innovative and easily accessible strategies was emphasized focusing on the functional group tolerance, substrate and coupling partner compatibility/limitation, the choice of catalyst, and product diversification. These processes were also accompanied by the mechanistic insights where deemed appropriate to demonstrate meaningful information. Moreover, the rapid examination of the structure-activity relationship analyses around the phthalazine core enabled by the pharmacophore replacement/integration revealed the generation of robust, efficient, and more selective compounds with pronounced biological effects. A large variety of in silico methods and ADME profiling tools were also employed to provide a global appraisal of the pharmacokinetics profile of diaza-heterocycles. Thus, the discovery of new structural leads offers the promise of improving treatments for various tropical diseases such as tuberculosis, leishmaniasis, malaria, Chagas disease, among many others including various cancers, atherosclerosis, HIV, inflammatory, and cardiovascular diseases. We hope this review would serve as an informative collection of structurally diverse molecules enabling the generation of mature, high-quality, and innovative routes to support the drug discovery endeavors.


Assuntos
Desenvolvimento de Medicamentos , Ftalazinas/farmacologia , Química Farmacêutica , Doença , Humanos , Estrutura Molecular , Ftalazinas/síntese química , Ftalazinas/química
19.
Bioorg Chem ; 102: 104088, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32711087

RESUMO

Alkaline phosphatases (APs) are a class of homodimeric enzymes which physiologically possess the dephosphorylation ability. APs catalyzes the hydrolysis of monoesters into phosphoric acid which in turn catalyze a transphosphorylation reaction. Thiazoles are nitrogen and sulfur containing aromatic heterocycles considered as effective APs inhibitors. In this context, the current research paper presents the successful synthesis, spectroscopic characterization and in vitro alkaline phosphatase inhibitory potential of new thiazole derivatives. The structure activity relationship and molecular docking studies were performed to find out the binding modes of the screened compounds with the target site of tissue non-specific alkaline phosphatase (h-TNAP) as well as intestinal alkaline phosphatase (h-IAP). Compound 5e was found to be potent inhibitor of h-TNAP with IC50 value of 0.17 ± 0.01 µM. Additionally, compounds 5a and 5i were found to be highly selective toward h-TNAP with IC50 values of 0.25 ± 0.01 µM and 0.21 ± 0.02 µM, respectively. In case of h-IAP compound 5f was the most potent inhibitor with IC50 value of 1.33 ± 0.10 µM. The most active compounds were resort to molecular docking studies on h-TNAP and h-IAP to explore the possible binding interactions of enzyme-ligand complexes. Molecular dynamic simulations were carried out to investigate the overall stability of protein in apo and holo state.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Intestinos/embriologia , Tiazóis/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
20.
Bioorg Chem ; 99: 103852, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32325339

RESUMO

A series of oxadiazole-sulfonamide hybrids was synthesized through multistep reaction and for the formation of targeted thioethers 6(a-l), a much facile route was adopted through which S-alkylation was successfully carried out at room temperature. These novel thioethers 6(a-l) were later screened against aldehyde reductase (ALR1) and aldose reductase (ALR2). Beside the enzyme inhibition studies, the compounds were also tested against cervical cancer cell lines (HeLa). The results suggested the significant inhibition pattern towards ALR2, while few compounds were active against ALR1. The synthesized derivatives have shown weak to moderate cytotoxicity. The most potent inhibitors (6b, 6e, 6f and 6l) were selected for molecular docking studies and the binding interactions were reported.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Antioxidantes/farmacologia , Complicações do Diabetes/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Aldeído Redutase/metabolismo , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Complicações do Diabetes/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HeLa , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Modelos Moleculares , Estrutura Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA