Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 246-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469671

RESUMO

PURPOSE: To reduce the inter-scanner variability of diffusion MRI (dMRI) measures between scanners from different vendors by developing a vendor-neutral dMRI pulse sequence using the open-source vendor-agnostic Pulseq platform. METHODS: We implemented a standard EPI based dMRI sequence in Pulseq. We tested it on two clinical scanners from different vendors (Siemens Prisma and GE Premier), systematically evaluating and comparing the within- and inter-scanner variability across the vendors, using both the vendor-provided and Pulseq dMRI sequences. Assessments covered both a diffusion phantom and three human subjects, using standard error (SE) and Lin's concordance correlation to measure the repeatability and reproducibility of standard DTI metrics including fractional anisotropy (FA) and mean diffusivity (MD). RESULTS: Identical dMRI sequences were executed on both scanners using Pulseq. On the phantom, the Pulseq sequence showed more than a 2.5× reduction in SE (variability) across Siemens and GE scanners. Furthermore, Pulseq sequences exhibited markedly reduced SE in-vivo, maintaining scan-rescan repeatability while delivering lower variability in FA and MD (more than 50% reduction in cortical/subcortical regions) compared to vendor-provided sequences. CONCLUSION: The Pulseq diffusion sequence reduces the cross-scanner variability for both phantom and in-vivo data, which will benefit multi-center neuroimaging studies and improve the reproducibility of neuroimaging studies.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Algoritmos , Masculino , Adulto , Feminino
2.
Magn Reson Med ; 91(5): 2044-2056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193276

RESUMO

PURPOSE: Subject movement during the MR examination is inevitable and causes not only image artifacts but also deteriorates the homogeneity of the main magnetic field (B0 ), which is a prerequisite for high quality data. Thus, characterization of changes to B0 , for example induced by patient movement, is important for MR applications that are prone to B0 inhomogeneities. METHODS: We propose a deep learning based method to predict such changes within the brain from the change of the head position to facilitate retrospective or even real-time correction. A 3D U-net was trained on in vivo gradient-echo brain 7T MRI data. The input consisted of B0 maps and anatomical images at an initial position, and anatomical images at a different head position (obtained by applying a rigid-body transformation on the initial anatomical image). The output consisted of B0 maps at the new head positions. We further fine-trained the network weights to each subject by measuring a limited number of head positions of the given subject, and trained the U-net with these data. RESULTS: Our approach was compared to established dynamic B0 field mapping via interleaved navigators, which suffer from limited spatial resolution and the need for undesirable sequence modifications. Qualitative and quantitative comparison showed similar performance between an interleaved navigator-equivalent method and proposed method. CONCLUSION: It is feasible to predict B0 maps from rigid subject movement and, when combined with external tracking hardware, this information could be used to improve the quality of MR acquisitions without the use of navigators.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Movimento , Processamento de Imagem Assistida por Computador/métodos , Artefatos
3.
J Am Chem Soc ; 145(20): 11121-11129, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172079

RESUMO

Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.

4.
J Magn Reson Imaging ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668040

RESUMO

BACKGROUND: In vivo cartilage deformation has been studied by static magnetic resonance imaging (MRI) with in situ loading, but knowledge about strain dynamics after load onset and release is scarce. PURPOSE: To measure the dynamics of patellofemoral cartilage deformation and recovery in response to in situ loading and unloading by using MRI with prospective motion correction. STUDY TYPE: Prospective. SUBJECTS: Ten healthy male volunteers (age: [31.4 ± 3.2] years). FIELD STRENGTH/SEQUENCE: T1-weighted RF-spoiled 2D gradient-echo sequence with a golden angle radial acquisition scheme, augmented with prospective motion correction, at 3 T. ASSESSMENT: In situ knee loading was realized with a flexion angle of approximately 40° using an MR-compatible pneumatic loading device. The loading paradigm consisted of 2 minutes of unloaded baseline followed by a 5-minute loading bout with 50% body weight and an unloading period of 38 minutes. The cartilage strain was assessed as the mean distance between patellar and femoral bone-cartilage interfaces as a percentage of the initial (pre-load) distance. STATISTICAL TESTS: Wilcoxon signed-rank tests (significance level: P < 0.05), Pearson correlation coefficient (r). RESULTS: The cartilage compression and recovery behavior was characterized by a viscoelastic response. The elastic compression ([-12.5 ± 3.1]%) was significantly larger than the viscous compression ([-7.6 ± 1.5]%) and the elastic recovery ([10.5 ± 2.1]%) was significantly larger than the viscous recovery ([6.1 ± 1.8]%). There was a significant residual offset strain ([-3.6 ± 2.3]%) across the cohort. A significant negative correlation between elastic compression and elastic recovery was observed (r = -0.75). DATA CONCLUSION: The in vivo cartilage compression and recovery time course in response to loading was successfully measured via dynamic MRI with prospective motion correction. The clinical relevance of the strain characteristics needs to be assessed in larger subject and patient cohorts. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

5.
J Magn Reson Imaging ; 57(3): 690-705, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326548

RESUMO

Complex engineered systems are often equipped with suites of sensors and ancillary devices that monitor their performance and maintenance needs. MRI scanners are no different in this regard. Some of the ancillary devices available to support MRI equipment, the ones of particular interest here, have the distinction of actually participating in the image acquisition process itself. Most commonly, such devices are used to monitor physiological motion or variations in the scanner's imaging fields, allowing the imaging and/or reconstruction process to adapt as imaging conditions change. "Classic" examples include electrocardiography (ECG) leads and respiratory bellows to monitor cardiac and respiratory motion, which have been standard equipment in scan rooms since the early days of MRI. Since then, many additional sensors and devices have been proposed to support MRI acquisitions. The main physical properties that they measure may be primarily "mechanical" (eg acceleration, speed, and torque), "acoustic" (sound and ultrasound), "optical" (light and infrared), or "electromagnetic" in nature. A review of these ancillary devices, as currently available in clinical and research settings, is presented here. In our opinion, these devices are not in competition with each other: as long as they provide useful and unique information, do not interfere with each other and are not prohibitively cumbersome to use, they might find their proper place in future suites of sensors. In time, MRI acquisitions will likely include a plurality of complementary signals. A little like the microbiome that provides genetic diversity to organisms, these devices can provide signal diversity to MRI acquisitions and enrich measurements. Machine-learning (ML) algorithms are well suited at combining diverse input signals toward coherent outputs, and they could make use of all such information toward improved MRI capabilities. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/fisiologia , Eletrocardiografia , Movimento (Física) , Movimento/fisiologia
6.
Eur Radiol ; 33(10): 7160-7167, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37121929

RESUMO

OBJECTIVES: The precise segmentation of atrophic structures remains challenging in neurodegenerative diseases. We determined the performance of a Deep Neural Patchwork (DNP) in comparison to established segmentation algorithms regarding the ability to delineate the putamen in multiple system atrophy (MSA), Parkinson's disease (PD), and healthy controls. METHODS: We retrospectively included patients with MSA and PD as well as healthy controls. A DNP was trained on manual segmentations of the putamen as ground truth. For this, the cohort was randomly split into a training (N = 131) and test set (N = 120). The DNP's performance was compared with putaminal segmentations as derived by Automatic Anatomic Labelling, Freesurfer and Fastsurfer. For validation, we assessed the diagnostic accuracy of the resulting segmentations in the delineation of MSA vs. PD and healthy controls. RESULTS: A total of 251 subjects (61 patients with MSA, 158 patients with PD, and 32 healthy controls; mean age of 61.5 ± 8.8 years) were included. Compared to the dice-coefficient of the DNP (0.96), we noted significantly weaker performance for AAL3 (0.72; p < .001), Freesurfer (0.82; p < .001), and Fastsurfer (0.84, p < .001). This was corroborated by the superior diagnostic performance of MSA vs. PD and HC of the DNP (AUC 0.93) versus the AUC of 0.88 for AAL3 (p = 0.02), 0.86 for Freesurfer (p = 0.048), and 0.85 for Fastsurfer (p = 0.04). CONCLUSION: By utilization of a DNP, accurate segmentations of the putamen can be obtained even if substantial atrophy is present. This allows for more precise extraction of imaging parameters or shape features from the putamen in relevant patient cohorts. CLINICAL RELEVANCE STATEMENT: Deep learning-based segmentation of the putamen was superior to currently available algorithms and is beneficial for the diagnosis of multiple system atrophy. KEY POINTS: • A Deep Neural Patchwork precisely delineates the putamen and performs equal to human labeling in multiple system atrophy, even when pronounced putaminal volume loss is present. • The Deep Neural Patchwork-based segmentation was more capable to differentiate between multiple system atrophy and Parkinson's disease than the AAL3 atlas, Freesurfer, or Fastsurfer.


Assuntos
Aprendizado Profundo , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Idoso , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Putamen/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
7.
MAGMA ; 36(5): 797-813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36964797

RESUMO

OBJECTIVE: Maps of B0 field inhomogeneities are often used to improve MRI image quality, even in a retrospective fashion. These field inhomogeneities depend on the exact head position within the static field but acquiring field maps (FM) at every position is time consuming. Here we propose a forward simulation strategy to obtain B0 predictions at different head-positions. METHODS: FM were predicted by combining (1) a multi-class tissue model for estimation of tissue-induced fields, (2) a linear k-space model for capturing gradient imperfections, (3) a dipole estimation for quantifying lower-body perturbing fields (4) and a position-dependent tissue mask to model FM alterations caused by large motion effects. The performance of the combined simulation strategy was compared with an approach based on a rigid body transformation of the FM measured in the reference position to the new position. RESULTS: The transformed FM provided inconsistent results for large head movements (> 5° rotation, approximately), while the simulation strategy had a superior prediction accuracy for all positions. The simulated FM was used to optimize B0 shims with up to 22.2% improvement with respect to the transformed FM approach. CONCLUSION: The proposed simulation strategy is able to predict movement-induced B0 field inhomogeneities yielding more precise estimates of the ground truth field homogeneity than the transformed FM.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
8.
MAGMA ; 36(6): 921-932, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578612

RESUMO

INTRODUCTION: Diffusion weighting in optically detected magnetic resonance experiments involving diamond nitrogen-vacancy (NV) centers can provide valuable microstructural information. Bi-planar gradient coils employed for diffusion weighting afford excellent spatial access, essential for integrating the NV-NMR components. Nevertheless, owing to the polar tilt of roughly [Formula: see text] of the diamond NV center, the primary magnetic field direction must be taken into account accordingly. METHODS: To determine the most effective bi-planar gradient coil configurations, we conducted an investigation into the impact of various factors, including the square side length, surface separation, and surface orientation. This was accomplished by generating over 500 bi-planar surface configurations using automated methods. RESULTS: We successfully generated and evaluated coil layouts in terms of sensitivity and field accuracy. Interestingly, inclined bi-planar orientations close to the NV-NMR setup's requirement, showed higher sensitivity for the transverse gradient channels than horizontal or vertical orientations. We fabricated a suitable solution as a three-channel bi-planar double-layered PCB system and experimentally validated the sensitivities at [Formula: see text] and [Formula: see text] for the transverse [Formula: see text] and [Formula: see text] gradients, and [Formula: see text] for the [Formula: see text] gradient. DISCUSSION: We found that the chosen relative bi-planar tilt of [Formula: see text] represents a reasonable compromise in terms of overall performance and allows for easier coil implementation with a straight, horizontal alignment within the overall experimental setup.


Assuntos
Diamante , Nitrogênio , Nitrogênio/química , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Difusão
9.
MAGMA ; 36(3): 439-449, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37195365

RESUMO

OBJECTIVE: Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise. MATERIALS AND METHODS: To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle). RESULTS: Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations. CONCLUSION: At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.


Assuntos
Calefação , Ondas de Rádio , Humanos , Imageamento por Ressonância Magnética/métodos , Temperatura , Imagens de Fantasmas , Temperatura Alta
10.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
11.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439488

RESUMO

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Imageamento por Ressonância Magnética/métodos , Solventes/química , Metanol , Água/química
12.
Magn Reson Med ; 88(3): 1465-1479, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35526237

RESUMO

PURPOSE: An automated algorithm for generating realizable MR gradient and shim coil layouts based on the boundary element method is presented here. The overall goal is to reduce postprocessing effort and thus enable for rapid prototyping of new coil designs. For a given surface mesh and target field, the algorithm generates a connected, non-overlapping wire path. METHODS: The proposed algorithm consists of several steps: Stream function optimization, two-dimensional surface projection, potential discretization, topological contour sorting, opening and interconnecting contours, and finally adding non-overlapping return paths. Several technical parameters such as current strength, inductance and field accuracy are assessed for quality control. RESULTS: The proposed method is successfully demonstrated in four different examples. All exemplary results demonstrate high accuracy with regard to reaching the respective target field. The optimal discretization for a given stream function is found by generating multiple layouts while varying the input parameter values. CONCLUSION: The presented algorithm allows for a rapid generation of interconnected coil layouts with high flexibility and low discretization error. This enables to reduce the overall post-processing effort. The source code of this work is publicly available ( https://github.com/Philipp-MR/CoilGen).


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software
13.
Magn Reson Med ; 88(2): 651-662, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35426463

RESUMO

PURPOSE: To develop, optimize, and implement a single shot spiral turbo spin echo (TSE) sequence at 3T and to demonstrate its feasibility to acquire artifact free images of the central nervous system with 1 mm spatial resolution in <200 ms. THEORY AND METHODS: Spiral TSE sequences with annulated spiral segmentation have been implemented with different acquisition modes. In fixed mode, the duration of each spiral segment is fixed to fill the available acquisition time tacq . In tangential mode, the beginning of each spiral segment is reached via a straight tangential trajectory. Tangential mode allows faster transition and thus longer tacq for a given echo spacing (ESP), but less data points can be acquired per acquisition interval. Alternating between spiral-in and spiral-out readout in alternating echoes leads to a somewhat different point spread function for off-resonant spins. RESULTS: Images of the brain with 1 mm spatial resolution acquired with a variable density spiral with ∼40% undersampling can be acquired in a single shot. All acquisition modes produce comparable image quality. Only mild artifacts in regions of strong susceptibility effects can be observed for ESP of 10 ms and below. The use of variable flip angle schemes allows seamless acquisition of consecutive slices and/or dynamic scans without waiting time between consecutive acquisitions. Comparison with images acquired at 1.5T shows reduced susceptibility artifacts within the brain and facial structures. CONCLUSION: Single shot spiral TSE has been demonstrated to enable highly efficient acquisition of high-resolution images of the brain in <200 ms per slice.


Assuntos
Artefatos , Aumento da Imagem , Encéfalo/diagnóstico por imagem , Cabeça , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos
14.
Magn Reson Med ; 88(6): 2395-2407, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968675

RESUMO

PURPOSE: This work presents an end-to-end open-source MR imaging workflow. It is highly flexible in rapid prototyping across the whole imaging process and integrates vendor-independent openly available tools. The whole workflow can be shared and executed on different MR platforms. It is also integrated in the JEMRIS simulation framework, which makes it possible to generate simulated data from the same sequence that runs on the MRI scanner using the same pipeline for image reconstruction. METHODS: MRI sequences can be designed in Python or JEMRIS using the Pulseq framework, allowing simplified integration of new sequence design tools. During the sequence design process, acquisition metadata required for reconstruction is stored in the MR raw data format. Data acquisition is possible on MRI scanners supported by Pulseq and in simulations through JEMRIS. An image reconstruction and postprocessing pipeline was implemented into a Python server that allows real-time processing of data as it is being acquired. The Berkeley Advanced Reconstruction Toolbox is integrated into this framework for image reconstruction. The reconstruction pipeline supports online integration through a vendor-dependent interface. RESULTS: The flexibility of the workflow is demonstrated with different examples, containing 3D parallel imaging with controlled aliasing in volumetric parallel imaging (CAIPIRINHA) acceleration, spiral imaging, and B0 mapping. All sequences, data, and the corresponding processing pipelines are publicly available. CONCLUSION: The proposed workflow is highly flexible and allows integration of advanced tools at all stages of the imaging process. All parts of this workflow are open-source, simplifying collaboration across different MR platforms or sites and improving reproducibility of results.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Fluxo de Trabalho
15.
Magn Reson Med ; 87(3): 1174-1183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719061

RESUMO

PURPOSE: Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS: Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS: Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION: This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.


Assuntos
Ácido Láctico , Músculo Esquelético , Exercício Físico , Humanos , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
16.
Magn Reson Med ; 86(3): 1284-1298, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33829538

RESUMO

PURPOSE: Prospective motion correction (PMC) and retrospective motion correction (RMC) have different advantages and limitations. The present work aims to combine the advantages of both for rigid body motion, aiming at correcting for faster motions than was previously achievable. Additionally, it provides insights into the effects of motion on pulse sequences and MR signals with a goal of further improving motion correction in the future. METHODS: The effective encoding trajectory and a global phase offset in a moving object are calculated based on complete gradient waveforms of an arbitrary sequence and a continuous motion model. These data are used to feed the forward signal model, which is then used in iterative image reconstruction to suppress the artifacts still present after the PMC. RESULTS: Verification experiments with a rotation phantom and in vivo were performed. Predictions of simulated motion artifacts for PMC based on sequence waveforms are very accurate. The performance at combined PMC+RMC is limited by Nyquist violations in the sampled k-space and can be compensated by oversampling. CONCLUSION: The combined correction results in better images than pure PMC in the presence of fast motion. The predictions of artifacts are very accurate, allowing for comparing sequences or protocols in simulations. The observed artifacts due to Nyquist violations are expected to be corrected by utilizing parallel imaging.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Algoritmos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Imagens de Fantasmas , Estudos Prospectivos , Estudos Retrospectivos
17.
Magn Reson Med ; 86(2): 852-865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724546

RESUMO

PURPOSE: To investigate the effects of prospective motion correction on turbo spin echo sequences and optimize motion correction approaches, mitigating signal dropout artifacts caused by the imperfections of motion tracking data. METHODS: Signal dropout artifacts caused by undesired phase deviations introduced by tracking errors are analyzed theoretically. To reduce the adverse effect of such deviations, two approaches are proposed: (1) freezing the correction for example, for even-numbered or higher number of echoes and (2) shifting the correction event prior to the left crusher gradient preceding the refocusing pulse. A comprehensive analysis is presented, including both signal simulations and experimental verifications in phantoms and in vivo. Performance of the proposed approach is validated in two healthy volunteers imaged under two types of motion conditions simulating inadvertent fast motions associated with discomfort and continuous large motions. RESULTS: The results show that the proposed optimization is able to efficiently correct for the motion artifacts and at the same time avoid signal dropout artifacts. Specifically, performing correction every 4th echo prior to the left crusher gradient was shown to improve image quality. CONCLUSION: An optimization approach is proposed to exploit the potential of external tracking for intra-echo-train motion artifact correction for turbo spin echo sequences.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Movimento (Física) , Imagens de Fantasmas , Estudos Prospectivos
18.
Magn Reson Med ; 86(1): 551-560, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33608963

RESUMO

PURPOSE: An open-source spatially resolved phase graph framework is proposed for simulating arbitrary pulse sequences in the presence of piece-wise constant gradients with arbitrary orientations in three dimensions. It generalizes the extended phase graph algorithm for analysis of nonperiodic sequences while preserving its efficiency, and is able to estimate the signal modulation in the 3D spatial domain. METHODS: The framework extends the recursive magnetization-evolution algorithm to account for anisotropic diffusion and exploits a novel 3D k-space grid-merging method to balance the computational effort and memory requirements against acceptable simulation errors. A new postsimulation module is proposed to track and visualize the signal evolution both in the k-space and in the image domain, which can be used for simulating image artifacts or finding frequency-response profiles. To illustrate the developed technique, three examples are presented: (1) fast off-resonance calculation for dictionary building in MR fingerprinting, (2) validation of a steady-state sequence with quasi-isotropic diffusion weighting, and (3) investigation of the magnetization evolution in PRESS-based spectroscopic imaging. RESULTS: The grid-merging algorithm of the proposed framework demonstrates high calculation efficiency exemplified by frequency-response simulation of pseudo steady-state or diffusion-weighted steady-state sequences. It further helps to visualize the signal evolution in PRESS-based sequences. CONCLUSIONS: The proposed simulation framework has been validated based on several different example applications for analyzing signal evolution in the frequency and spatial domain.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Simulação por Computador , Difusão , Imageamento Tridimensional , Imagens de Fantasmas
19.
Magn Reson Med ; 85(2): 1123-1133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32745321

RESUMO

PURPOSE: Nuclear Magnetic Resonance field probes provide exciting possibilities for enhancing MR image quality by allowing for calibration of k-space trajectories and/or dynamic measurement of local field changes. The purpose of this study is to design and build field probes, which are easier to manufacture and more flexible to use than existing probes. METHODS: A new manufacturing method is presented based on light-activated resin to encase the coil assembly and the 1H sample. This method allows for realizing field probes with tightly integrated orthogonal coils, whereby the local resonance frequency of protons can be adjusted during the MR experiment, by applying a DC current to the integrated B0 -field modification coil. RESULTS: The apparent field probe position in a gradient echo experiment was shifted within the field of view by changing its Larmor frequency using an integrated micro-coil with 5.5 windings. The measured frequency modulation induced by the B0 -field modification coil was 113 Hz/mA. The probe was tested with currents up to 100 mA. The DC current in the local field modification coil did not introduce visible artifacts in the MR images. Furthermore selective off-resonant excitation of the new field probes at 2 kHz above the main RF frequency was demonstrated. Gradient impulse response functions measured with a traditional and proposed probe show similar gradient imperfections. CONCLUSIONS: The presented approach opens up new possibilities for concurrent field monitoring during MR experiments using standard RF capabilities of clinical scanners.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Campos Magnéticos , Imagens de Fantasmas
20.
Magn Reson Med ; 86(4): 1845-1858, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33961312

RESUMO

PURPOSE: As the field of CEST grows, various novel preparation periods using different parameters are being introduced. At the same time, large, multisite clinical studies require clearly defined protocols, especially across different vendors. Here, we propose a CEST definition standard using the open Pulseq format for a shareable, simple, and exact definition of CEST protocols. METHODS: We present the benefits of such a standard in three ways: (1) an open database on GitHub, where fully defined, human-readable CEST protocols can be shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST preparation period and can be combined with any existing readout module. RESULTS: The exact definition of the CEST preparation period, in combination with the flexible simulation, leads to a good match between simulations and measurements. The standard allowed finding consensus on three amide proton transfer-weighted protocols that could be compared in healthy subjects and a tumor patient. In addition, we could show coherent multisite results for a sophisticated CEST method, highlighting the benefits regarding protocol sharing and reproducibility. CONCLUSION: With Pulseq-CEST, we provide a straightforward approach to standardize, share, simulate, and measure different CEST preparation schemes, which are inherently completely defined.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Amidas , Simulação por Computador , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA