Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
Nat Immunol ; 19(4): 322-324, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29563628
3.
Nat Immunol ; 13(9): 851-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22820602

RESUMO

Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR ß-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.


Assuntos
Apresentação de Antígeno/imunologia , Autoantígenos/imunologia , Células Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/química , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD1d/química , Antígenos CD1d/imunologia , Cristalização , Humanos , Células Matadoras Naturais/química , Camundongos , Estrutura Quaternária de Proteína , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Sulfoglicoesfingolipídeos/imunologia , Ressonância de Plasmônio de Superfície , Subpopulações de Linfócitos T/química
4.
Nat Immunol ; 12(10): 966-74, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892173

RESUMO

Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.


Assuntos
Glicolipídeos/imunologia , Bactérias Gram-Positivas/imunologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD1d/química , Antígenos CD1d/fisiologia , Linhagem Celular , Glicolipídeos/química , Humanos , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo
5.
Immunity ; 41(4): 543-54, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367571

RESUMO

Glycosylceramides in mammalian species are thought to be present in the form of ß-anomers. This conclusion was reinforced by the identification of only one glucosylceramide and one galactosylceramide synthase, both ß-transferases, in mammalian genomes. Thus, the possibility that small amounts of α-anomers could be produced by an alternative enzymatic pathway, by an unfaithful enzyme, or spontaneously in unusual cellular compartments has not been examined in detail. We approached the question by taking advantage of the exquisite specificity of T and B lymphocytes and combined it with the specificity of catabolic enzymes of the sphingolipid pathway. Here, we demonstrate that mammalian immune cells produce constitutively very small quantities of α-glycosylceramides, which are the major endogenous ligands of natural killer T cells. Catabolic enzymes of the ceramide and glycolipid pathway tightly control the amount of these α-glycosylceramides. The exploitation of this pathway to manipulate the immune response will create new therapeutic opportunities.


Assuntos
Linfócitos B/enzimologia , Glucosilceramidas/biossíntese , Células T Matadoras Naturais/imunologia , Linfócitos T/enzimologia , Animais , Antígenos CD1d , Linhagem Celular , Glucosilceramidas/imunologia , Glicolipídeos/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica
6.
J Biol Chem ; 294(38): 13887-13888, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541026

RESUMO

Agonistic antibodies are powerful tools to dimerize receptors in the absence of ligand binding, but high-fidelity receptor activation requires that these antibodies accurately recapitulate the native dimeric state. Spangler et al. employ a clever approach to select for antibodies that bind a specific IL-4Rα/γc heterodimeric complex in its native signaling conformation, leading to a monovalent "stapler," a single-chain variable fragment (scFv) that binds at the dimerization interface. This powerful approach can be further exploited for a variety of homo- or heterodimeric receptors to achieve signaling, especially in the absence of endogenous ligand.


Assuntos
Subunidade gama Comum de Receptores de Interleucina , Transdução de Sinais , Dimerização
7.
J Biol Chem ; 294(35): 12947-12956, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31296659

RESUMO

Natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the CD1d molecule (CD1d). They rapidly respond to antigen challenge and can activate both innate and adaptive immune cells. To study the role of antigen presentation in NKT cell activation, previous studies have developed several anti-CD1d antibodies that block CD1d binding to T-cell receptors (TCRs). Antibodies that are specific to both CD1d and the presented antigen can only be used to study the function of only a limited number of antigens. In contrast, antibodies that bind CD1d and block TCR binding regardless of the presented antigen can be widely used to assess the role of TCR-mediated NKT cell activation in various disease models. Here, we report the crystal structure of the widely used anti-mouse CD1d antibody 1B1 bound to CD1d at a resolution of 2.45 Å and characterized its binding to CD1d-presented glycolipids. We observed that 1B1 uses a long hydrophobic H3 loop that is inserted deep into the binding groove of CD1d where it makes intimate nonpolar contacts with the lipid backbone of an incorporated spacer lipid. Using an NKT cell agonist that has a modified sphingosine moiety, we further demonstrate that 1B1 in its monovalent form cannot block TCR-mediated NKT cell activation, because 1B1 fails to bind with high affinity to mCD1d. Our results suggest potential limitations of using 1B1 to assess antigen recognition by NKT cells, especially when investigating antigens that do not follow the canonical two alkyl-chain rule.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD1d/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Reações Antígeno-Anticorpo , Antígenos CD1d/isolamento & purificação , Camundongos , Receptores de Antígenos de Linfócitos T/química , Células Tumorais Cultivadas
8.
J Biol Chem ; 294(6): 1831-1845, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30545939

RESUMO

The interaction between the receptor 4-1BB and its ligand 4-1BBL provides co-stimulatory signals for T-cell activation and proliferation. However, differences in the mouse and human molecules might result in differential engagement of this pathway. Here, we report the crystal structure of mouse 4-1BBL and of the mouse 4-1BB/4-1BBL complex, which together provided insights into the molecular mechanism by which m4-1BBL and its cognate receptor recognize each other. Unlike all human or mouse tumor necrosis factor ligands that form noncovalent and mostly trimeric assemblies, the m4-1BBL structure formed a disulfide-linked dimeric assembly. The structure disclosed that certain differences in the amino acid composition along the intramolecular interface, together with two specific residues (Cys-246 and Ser-256) present exclusively in m4-1BBL, are responsible for this unique dimerization. Unexpectedly, upon m4-1BB binding, m4-1BBL undergoes structural changes within each protomer; moreover, the individual m4-1BBL protomers rotate relative to each other, yielding a dimerization interface with more inter-subunit interactions. We also observed that in the m4-1BB/4-1BBL complex, each receptor monomer binds exclusively to a single ligand subunit with contributions of cysteine-rich domain 1 (CRD1), CRD2, and CRD3. Furthermore, structure-guided mutagenesis of the binding interface revealed that novel binding interactions with the GH loop, rather than the DE loop, are energetically critical and define the m4-1BB receptor selectivity for m4-1BBL. A comparison with the human 4-1BB/4-1BBL complex highlighted several differences between the ligand- and receptor-binding interfaces, providing an explanation for the absence of inter-species cross-reactivity between human and mouse 4-1BB and 4-1BBL molecules.


Assuntos
Ligante 4-1BB/química , Complexos Multiproteicos/química , Multimerização Proteica , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Animais , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Células Sf9 , Spodoptera
9.
J Biol Chem ; 294(27): 10519-10529, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31126984

RESUMO

Human cytomegalovirus (HCMV) is a ß-herpesvirus that has co-evolved with the host immune system to establish lifelong persistence. HCMV encodes many immunomodulatory molecules, including the glycoprotein UL144. UL144 is a structural mimic of the tumor necrosis factor receptor superfamily member HVEM (herpesvirus entry mediator), which binds to the various ligands LIGHT, LTα, BTLA, CD160, and gD. However, in contrast to HVEM, UL144 only binds BTLA, inhibiting T-cell activation. Here, we report the crystal structure of the UL144-BTLA complex, revealing that UL144 utilizes residues from its N-terminal cysteine-rich domain 1 (CRD1) to interact uniquely with BTLA. The shorter CRD2 loop of UL144 also alters the relative orientation of BTLA binding with both N-terminal CRDs. By employing structure-guided mutagenesis, we have identified a mutant of BTLA (L123A) that interferes with HVEM binding but preserves UL144 interactions. Furthermore, our results illuminate structural differences between UL144 and HVEM that explain its binding selectivity and highlight it as a suitable scaffold for designing superior, immune inhibitory BTLA agonists.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas de Membrana/química , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/química , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Glicoproteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Receptores Imunológicos/química , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Proteínas Virais/metabolismo
10.
J Biol Chem ; 294(39): 14345-14356, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31391251

RESUMO

Type I natural killer T (NKT) cells are a population of innate like T lymphocytes that rapidly respond to α-GalCer presented by CD1d via the production of both pro- and anti-inflammatory cytokines. While developing novel α-GalCer analogs that were meant to be utilized as potential adjuvants because of their production of pro-inflammatory cytokines (Th1 skewers), we generated α-galactosylsphingamides (αGSA). Surprisingly, αGSAs are not potent antigens in vivo despite their strong T-cell receptor (TCR)-binding affinities. Here, using surface plasmon resonance (SPR), antigen presentation assays, and X-ray crystallography (yielding crystal structures of 19 different binary (CD1d-glycolipid) or ternary (CD1d-glycolipid-TCR) complexes at resolutions between 1.67 and 2.85 Å), we characterized the biochemical and structural details of αGSA recognition by murine NKT cells. We identified a molecular switch within murine (m)CD1d that modulates NKT cell activation by αGSAs. We found that the molecular switch involves a hydrogen bond interaction between Tyr-73 of mCD1d and the amide group oxygen of αGSAs. We further established that the length of the acyl chain controls the positioning of the amide group with respect to the molecular switch and works synergistically with Tyr-73 to control NKT cell activity. In conclusion, our findings reveal important mechanistic insights into the presentation and recognition of glycolipids with polar moieties in an otherwise apolar milieu. These observations may inform the development αGSAs as specific NKT cell antagonists to modulate immune responses.


Assuntos
Antígenos CD1d/química , Glicoesfingolipídeos/química , Células Matadoras Naturais/imunologia , Simulação de Dinâmica Molecular , Animais , Antígenos CD1d/metabolismo , Sítios de Ligação , Glicoesfingolipídeos/metabolismo , Ligação de Hidrogênio , Ativação Linfocitária , Camundongos , Oxigênio/química , Ligação Proteica , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Células Sf9 , Spodoptera
11.
Eur J Immunol ; 49(2): 242-254, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508304

RESUMO

Glycosphingolipids and glycerophospholipids bind CD1d. Glycosphingolipid-reactive invariant NKT-cells (iNKT) exhibit myriad immune effects, however, little is known about the functions of phospholipid-reactive T cells (PLT). We report that the normal mouse immune repertoire contains αß T cells, which recognize self-glycerophospholipids such as phosphatidic acid (PA) in a CD1d-restricted manner and don't cross-react with iNKT-cell ligands. PA bound to CD1d in the absence of lipid transfer proteins. Upon in vivo priming, PA induced an expansion and activation of T cells in Ag-specific manner. Crystal structure of the CD1d:PA complex revealed that the ligand is centrally located in the CD1d-binding groove opening for TCR recognition. Moreover, the increased flexibility of the two acyl chains in diacylglycerol ligands and a less stringent-binding orientation for glycerophospholipids as compared with the bindings of glycosphingolipids may allow glycerophospholipids to readily occupy CD1d. Indeed, PA competed with α-galactosylceramide to load onto CD1d, leading to reduced expression of CD1d:α-galactosylceramide complexes on the surface of dendritic cells. Consistently, glycerophospholipids reduced iNKT-cell proliferation, expansion, and cytokine production in vitro and in vivo. Such superior ability of self-glycerophospholipids to compete with iNKT-cell ligands to occupy CD1d may help maintain homeostasis between the diverse subsets of lipid-reactive T cells, with important pathogenetic and therapeutic implications.


Assuntos
Antígenos CD1d , Células Dendríticas , Ativação Linfocitária , Células T Matadoras Naturais , Ácidos Fosfatídicos , Animais , Antígenos CD1d/química , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Cristalografia por Raios X , Células Dendríticas/química , Células Dendríticas/imunologia , Galactosilceramidas/química , Galactosilceramidas/imunologia , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/química , Células T Matadoras Naturais/imunologia , Ácidos Fosfatídicos/química , Ácidos Fosfatídicos/imunologia
12.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487283

RESUMO

Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. While HCMV infection is generally asymptomatic in the immunocompetent, it can have devastating consequences in those with compromised or underdeveloped immune systems, including transplant recipients and neonates. Galectins are a widely expressed protein family that have been demonstrated to modulate both antiviral immunity and regulate direct host-virus interactions. The potential for galectins to directly modulate HCMV infection has not previously been studied, and our results reveal that galectin-9 (Gal-9) can potently inhibit HCMV infection. Gal-9-mediated inhibition of HCMV was dependent upon its carbohydrate recognition domains and thus dependent on glycan interactions. Temperature shift studies revealed that Gal-9 specific inhibition was mediated primarily at the level of virus-cell fusion and not binding. Additionally, we found that during reactivation of HCMV in hematopoietic stem cell transplant (HSCT) patients soluble Gal-9 is upregulated. This study provides the first evidence for Gal-9 functioning as a potent antiviral defense effector molecule against HCMV infection and identifies it as a potential clinical candidate to restrict HCMV infections.IMPORTANCE Human cytomegalovirus (HCMV) continues to cause serious and often life-threatening disease in those with impaired or underdeveloped immune systems. This virus is able to infect and replicate in a wide range of human cell types, which enables the virus to spread to other individuals in a number of settings. Current antiviral drugs are associated with a significant toxicity profile, and there is no vaccine; these factors highlight a need to identify additional targets for the development of anti-HCMV therapies. We demonstrate for the first time that secretion of a member of the galectin family of proteins, galectin-9 (Gal-9), is upregulated during natural HCMV-reactivated infection and that this soluble cellular protein possesses a potent capacity to block HCMV infection by inhibiting virus entry into the host cell. Our findings support the possibility of harnessing the antiviral properties of Gal-9 to prevent HCMV infection and disease.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/patogenicidade , Galectinas/metabolismo , Ativação Viral , Internalização do Vírus , Replicação Viral , Adulto , Antivirais/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Prospectivos , Transplantados
14.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066279

RESUMO

T cell-mediated immune recognition of peptides is initiated upon binding of the antigen receptor on T cells (TCR) to the peptide-MHC complex. TCRs are typically restricted by a particular MHC allele, while polymorphism within the MHC molecule can affect the spectrum of peptides that are bound and presented to the TCR. Classical MHC Class I molecules have a confined binding groove that restricts the length of the presented peptides to typically 8-11 amino acids. Both N- and C-termini of the peptide are bound within binding pockets, allowing the TCR to dock in a diagonal orientation above the MHC-peptide complex. Longer peptides have been observed to bind either in a bulged or zig-zag orientation within the binding groove. More recently, unconventional peptide presentation has been reported for different MHC I molecules. Here, either N- or C-terminal amino acid additions to conventionally presented peptides induced a structural change either within the MHC I molecule that opened the confined binding groove or within the peptide itself, allowing the peptide ends to protrude into the solvent. Since both TCRs on T cells and killer immunoglobulin receptors on Natural Killer (NK) cells contact the MHC I molecule above or at the periphery of the peptide binding groove, unconventionally presented peptides could modulate both T cell and NK cell responses. We will highlight recent advances in our understanding of the functional consequences of unconventional peptide presentation in cellular immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Antígenos de Histocompatibilidade Classe I/química , Humanos , Ativação Linfocitária , Receptores KIR/química , Receptores KIR/imunologia
15.
J Biol Chem ; 293(26): 9958-9969, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29720398

RESUMO

Human (h)4-1BB (TNFRSF9 or CD137) is an inducible tumor necrosis factor receptor (TNFR) superfamily member that interacts with its cognate ligand h4-1BBL to promote T lymphocyte activation and proliferation. h4-1BB is currently being targeted with agonists in cancer immunotherapy. Here, we determined the crystal structures of unbound h4-1BBL and both WT h4-1BB and a dimerization-deficient h4-1BB mutant (C121S) in complex with h4-1BBL at resolutions between 2.7 and 3.2 Å. We observed that the structural arrangement of 4-1BBL, both unbound and in the complex, represents the canonical bell shape as seen in other similar TNF proteins and differs from the previously reported three-bladed propeller structure of 4-1BBL. We also found that the binding site for the receptor is at the crevice formed between two protomers of h4-1BBL, but that h4-1BB interacts predominantly with only one ligand protomer. Moreover, h4-1BBL lacked the conserved tyrosine residue in the DE loop that forms canonical interactions between other TNFR family molecules and their ligands, suggesting h4-1BBL engages h4-1BB through a distinct mechanism. Of note, we discovered that h4-1BB forms a disulfide-linked dimer because of the presence of an additional cysteine residue found in its cysteine-rich domain 4 (CRD4). As a result, h4-1BB dimerization, in addition to trimerization via h4-1BBL binding, could result in cross-linking of individual ligand-receptor complexes to form a 2D network that stimulates strong h4-1BB signaling. This work provides critical insights into the structural and functional properties of both h4-1BB and h4-1BBL and reveals that covalent receptor dimerization amplifies h4-1BB signaling.


Assuntos
Ligante 4-1BB/metabolismo , Multimerização Proteica , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante 4-1BB/química , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Estrutura Quaternária de Proteína
16.
J Biol Chem ; 293(4): 1317-1329, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29242193

RESUMO

4-1BB (CD137) is a TNF receptor superfamily (TNFRSF) member that is thought to undergo receptor trimerization upon binding to its trimeric TNF superfamily ligand (4-1BBL) to stimulate immune responses. 4-1BB also can bind to the tandem repeat-type lectin galectin-9 (Gal-9), and signaling through mouse (m)4-1BB is reduced in galectin-9 (Gal-9)-deficient mice, suggesting a pivotal role of Gal-9 in m4-1BB activation. Here, using sulfur-SAD phasing, we determined the crystal structure of m4-1BB to 2.2-Å resolution. We found that similar to other TNFRSFs, m4-1BB has four cysteine-rich domains (CRDs). However, the organization of CRD1 and the orientation of CRD3 and CRD4 with respect to CRD2 in the m4-1BB structure distinctly differed from those of other TNFRSFs. Moreover, we mapped two Asn residues within CRD4 that are N-linked glycosylated and mediate m4-1BB binding to Gal-9. Kinetics studies of m4-1BB disclosed a very tight nanomolar binding affinity to m4-1BBL with an unexpectedly strong avidity effect. Both N- and C-terminal domains of Gal-9 bound m4-1BB, but with lower affinity compared with m4-1BBL. Although the TNF homology domain (THD) of human (h)4-1BBL forms non-covalent trimers, we found that m4-1BBL formed a covalent dimer via 2 cysteines absent in h4-1BBL. As multimerization and clustering is a prerequisite for TNFR intracellular signaling, and as m4-1BBL can only recruit two m4-1BB monomers, we hypothesize that m4-1BBL and Gal-9 act together to aid aggregation of m4-1BB monomers to efficiently initiate m4-1BB signaling.


Assuntos
Ligante 4-1BB/química , Galectinas/química , Transdução de Sinais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/química , Ligante 4-1BB/genética , Ligante 4-1BB/metabolismo , Animais , Cristalografia por Raios X , Galectinas/genética , Galectinas/metabolismo , Células HEK293 , Humanos , Camundongos , Domínios Proteicos , Estrutura Quaternária de Proteína , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
17.
J Biol Chem ; 293(1): 390-401, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29123031

RESUMO

Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.


Assuntos
Anticorpos Antivirais/ultraestrutura , Moléculas de Adesão Celular/imunologia , Proteínas do Envelope Viral/química , Anticorpos/metabolismo , Anticorpos/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/fisiologia , Antígenos Virais/imunologia , Cristalografia por Raios X/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/química , Humanos , Testes de Neutralização , Ligação Proteica , Relação Estrutura-Atividade , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia
18.
Org Biomol Chem ; 17(5): 1225-1237, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30656346

RESUMO

Activated NKT cells can stimulate antigen-presenting cells leading to enhanced peptide antigen-specific immunity. However, administration of potent NKT cell agonists like α-galactosylceramide (α-GalCer) can be associated with release of high levels of cytokines, and in some situations, hepatotoxicity. Here we show that it is possible to provoke sufficient NKT cell activity to stimulate strong antigen-specific T cell responses without these unwanted effects. This was achieved by chemically conjugating antigenic peptides to α-galactosylphytosphingosine (α-GalPhs), an NKT cell agonist with very weak activity based on structural characterisation and biological assays. Conjugation improved delivery to antigen-presenting cells in vivo, while use of a cathepsin-sensitive linker to release the α-GalPhs and peptide within the same cell promoted strong T cell activation and therapeutic anti-tumour responses in mice. The conjugates activated human NKT cells and enhanced human T cell responses to a viral peptide in vitro. Accordingly, we have demonstrated a means to safely exploit the immunostimulatory properties of NKT cells to enhance T cell activation for virus- and tumour-specific immunity.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Peptídeos/administração & dosagem , Adjuvantes Imunológicos , Animais , Antígenos CD1d/química , Vacinas Anticâncer/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Epitopos/química , Glicolipídeos/química , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Peptídeos/química , Peptídeos/imunologia
19.
J Immunol ; 199(8): 2721-2728, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28877989

RESUMO

Stimulation of several TNF receptor family proteins has been shown to dampen inflammatory disease in murine models through augmenting the number and/or activity of regulatory T cells (Tregs). We recently found that one molecule, 4-1BB, used binding to Galectin-9 to exert its immunosuppressive effects and drive expansion of CD8+Foxp3- Tregs. We now show that ligation of another TNFR family molecule, DR3, which has previously been found to strongly expand CD4+Foxp3+ Tregs and suppress inflammation, also requires Galectin-9. We found that the extracellular region of DR3 directly binds to Galectin-9, and that Galectin-9 associates with DR3 in Tregs. From studies in vitro with Galectin-9-/- CD4+ T cells and Tregs, we found that stimulatory activity induced by ligating DR3 was in part dependent on Galectin-9. In vivo, in a model of experimental autoimmune encephalomyelitis, we show that an agonist of DR3 suppressed disease, correlating with expansion of CD4+Foxp3+ Tregs, and this protective effect was lost in Galectin-9-/- mice. Similar results were seen in an allergic lung inflammation model. Thus, we demonstrate a novel function of Galectin-9 in facilitating activity of DR3 related to Treg-mediated suppression.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Galectinas/metabolismo , Inflamação/imunologia , Esclerose Múltipla/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Fatores de Transcrição Forkhead/metabolismo , Galectinas/genética , Humanos , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
20.
J Immunol ; 199(1): 97-106, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526683

RESUMO

Invariant NKT (iNKT) cells are innate-like lymphocytes that recognize lipid Ags presented by CD1d. The prototypical Ag, α-galactosylceramide, strongly activates human and mouse iNKT cells, leading to the assumption that iNKT cell physiology in human and mouse is similar. In this article, we report the surprising finding that human, but not mouse, iNKT cells directly recognize myelin-derived sulfatide presented by CD1d. We propose that sulfatide is recognized only by human iNKT cells because of the unique positioning of the 3-O-sulfated ß-galactose headgroup. Surface plasmon resonance shows that the affinity of human CD1d-sulfatide for the iNKT cell receptor is relatively low compared with CD1d-α-galactosylceramide (KD of 19-26 µM versus 1 µM). Apolipoprotein E isolated from human cerebrospinal fluid carries sulfatide that can be captured by APCs and presented by CD1d to iNKT cells. APCs from patients with metachromatic leukodystrophy, who accumulate sulfatides due to a deficiency in arylsulfatase-A, directly activate iNKT cells. Thus, we have identified sulfatide as a self-lipid recognized by human iNKT cells and propose that sulfatide recognition by innate T cells may be an important pathologic feature of neuroinflammatory disease and that sulfatide in APCs may contribute to the endogenous pathway of iNKT cell activation.


Assuntos
Apresentação de Antígeno , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Sulfoglicoesfingolipídeos/imunologia , Animais , Antígenos CD1d/imunologia , Apolipoproteínas E/líquido cefalorraquidiano , Apolipoproteínas E/química , Apolipoproteínas E/imunologia , Linhagem Celular , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/metabolismo , Galactosilceramidas/imunologia , Humanos , Leucodistrofia Metacromática/imunologia , Camundongos , Células T Matadoras Naturais/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Ressonância de Plasmônio de Superfície , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA