Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Brain Mapp ; 45(7): e26666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726831

RESUMO

Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.


Assuntos
Imageamento por Ressonância Magnética , Meditação , Rede Nervosa , Humanos , Reprodutibilidade dos Testes , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto , Masculino , Feminino , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
2.
Psychiatry Clin Neurosci ; 78(4): 229-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38113307

RESUMO

AIM: Recovery from stroke is adversely affected by neuropsychiatric complications, cognitive impairment, and functional disability. Better knowledge of their mutual relationships is required to inform effective interventions. Network theory enables the conceptualization of symptoms and impairments as dynamic and mutually interacting systems. We aimed to identify interactions of poststroke complications using network analysis in diverse stroke samples. METHODS: Data from 2185 patients were sourced from member studies of STROKOG (Stroke and Cognition Consortium), an international collaboration of stroke studies. Networks were generated for each cohort, whereby nodes represented neuropsychiatric symptoms, cognitive deficits, and disabilities on activities of daily living. Edges characterized associations between them. Centrality measures were used to identify hub items. RESULTS: Across cohorts, a single network of interrelated poststroke complications emerged. Networks exhibited dissociable depression, apathy, fatigue, cognitive impairment, and functional disability modules. Worry was the most central symptom across cohorts, irrespective of the depression scale used. Items relating to activities of daily living were also highly central nodes. Follow-up analysis in two studies revealed that individuals who worried had more densely connected networks than those free of worry (CASPER [Cognition and Affect after Stroke: Prospective Evaluation of Risks] study: S = 9.72, P = 0.038; SSS [Sydney Stroke Study]: S = 13.56, P = 0.069). CONCLUSION: Neuropsychiatric symptoms are highly interconnected with cognitive deficits and functional disabilities resulting from stroke. Given their central position and high level of connectedness, worry and activities of daily living have the potential to drive multimorbidity and mutual reinforcement between domains of poststroke complications. Targeting these factors early after stroke may have benefits that extend to other complications, leading to better stroke outcomes.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Depressão/psicologia , Atividades Cotidianas/psicologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Transtornos Cognitivos/complicações , Disfunção Cognitiva/complicações , Cognição
3.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766116

RESUMO

Background: Brooding is a critical symptom and prognostic factor of major depressive disorder (MDD), which involves passively dwelling on self-referential dysphoria and related abstractions. The neurobiology of brooding remains under characterized. We aimed to elucidate neural dynamics underlying brooding, and explore their responses to neurofeedback intervention in MDD. Methods: We investigated functional MRI (fMRI) dynamic functional network connectivity (dFNC) in 36 MDD subjects and 26 healthy controls (HCs) during rest and brooding. Rest was measured before and after fMRI neurofeedback (MDD-active/sham: n=18/18, HC-active/sham: n=13/13). Baseline brooding severity was recorded using Ruminative Response Scale - Brooding subscale (RRS-B). Results: Four recurrent dFNC states were identified. Measures of time spent were not significantly different between MDD and HC for any of these states during brooding or rest. RRS-B scores in MDD showed significant negative correlation with measures of time spent in dFNC state 3 during brooding (r=-0.5, p= 1.7E-3, FDR-significant). This state comprises strong connections spanning several brain systems involved in sensory, attentional and cognitive processing. Time spent in this anti-brooding dFNC state significantly increased following neurofeedback only in the MDD active group (z=-2.09, p=0.037). Limitations: The sample size was small and imbalanced between groups. Brooding condition was not examined post-neurofeedback. Conclusion: We identified a densely connected anti-brooding dFNC brain state in MDD. MDD subjects spent significantly longer time in this state after active neurofeedback intervention, highlighting neurofeedback's potential for modulating dysfunctional brain dynamics to treat MDD.

4.
Commun Biol ; 7(1): 571, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750282

RESUMO

Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.


Assuntos
Neurônios , Software , Neurônios/fisiologia , Humanos , Animais , Algoritmos , Rede Nervosa/fisiologia , Rede Nervosa/citologia , Processamento de Imagem Assistida por Computador/métodos , Modelos Neurológicos
5.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464116

RESUMO

Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization - axonal growth. Emulating the chemoaffinity guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.

6.
bioRxiv ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39026811

RESUMO

The study of functional MRI data is increasingly performed after mapping from volumetric voxels to surface vertices. Processing pipelines commonly used to achieve this mapping produce meshes with uneven vertex spacing, with closer neighbours in sulci compared to gyri. Consequently, correlations between the fMRI time series of neighbouring sulcal vertices are stronger than expected. However, the causes, extent, and impacts of this bias are not well understood or widely appreciated. We explain the origins of these biases, and using in-silico models of fMRI data, illustrate how they lead to spurious results. The bias leads to leakage of anatomical cortical folding information into fMRI time series. We show that many common analyses can be affected by this "gyral bias", including test-retest reliability, fingerprinting, functional parcellations, regional homogeneity, and brain-behaviour associations. Finally, we provide recommendations to avoid or remedy this spatial bias.

7.
Nat Aging ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942983

RESUMO

Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.

8.
Invest Radiol ; 59(1): 13-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707839

RESUMO

ABSTRACT: Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.


Assuntos
Neurocirurgia , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos
9.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149253

RESUMO

Background: Inter-individual variability in neurobiological and clinical characteristics in mental illness is often overlooked by classical group-mean case-control studies. Studies using normative modelling to infer person-specific deviations of grey matter volume have indicated that group means are not representative of most individuals. The extent to which this variability is present in white matter morphometry, which is integral to brain function, remains unclear. Methods: We applied Warped Bayesian Linear Regression normative models to T1-weighted magnetic resonance imaging data and mapped inter-individual variability in person-specific white matter volume deviations in 1,294 cases (58% male) diagnosed with one of six disorders (attention-deficit/hyperactivity, autism, bipolar, major depressive, obsessive-compulsive and schizophrenia) and 1,465 matched controls (54% male) recruited across 25 scan sites. We developed a framework to characterize deviation heterogeneity at multiple spatial scales, from individual voxels, through inter-regional connections, specific brain regions, and spatially extended brain networks. Results: The specific locations of white matter volume deviations were highly heterogeneous across participants, affecting the same voxel in fewer than 8% of individuals with the same diagnosis. For autism and schizophrenia, negative deviations (i.e., areas where volume is lower than normative expectations) aggregated into common tracts, regions and large-scale networks in up to 35% of individuals. Conclusions: The prevalence of white matter volume deviations was lower than previously observed in grey matter, and the specific location of these deviations was highly heterogeneous when considering voxel-wise spatial resolution. Evidence of aggregation within common pathways and networks was apparent in schizophrenia and autism but not other disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA