Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Res ; 83(6): 807-808, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919423

RESUMO

Glioblastoma is the most deadly and common primary tumor of the central nervous system. Heterogeneity in the disease causes complications from diagnosis to treatment. It has long been suggested that a stem cell and/or progenitor population may be the origin of this disease and provide the underlying heterogeneity. However, which population precisely is the cell of origin, or whether there is only one cell of origin, has remained elusive. Previous studies have shown that, with proper combinations of oncogene expression and tumor suppressor loss, three cell types have the potential to transform into glioma-neural stem cells (NSC), oligodendrocyte precursor cells (OPC), and astrocytes. In a newly published article in Cancer Research, Verma and colleagues make a convincing argument through elegant animal work that an intermediate progenitor cell population, primitive OPCs, has higher tumorigenic potential than the NSCs or OPCs. This study helps rectify the controversy around which cell populations are the most sensitive to transformation in gliomagenesis. See related article by Verma et al., p. 890.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Animais , Células Precursoras de Oligodendrócitos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Diferenciação Celular/fisiologia , Oligodendroglia , Células-Tronco Neurais/metabolismo
2.
J Exp Med ; 220(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367776

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity. We found αCTLA-4 drove increased inflammation and colonic tissue damage in mice with genetic predisposition to intestinal inflammation, acute gastrointestinal infection, transplantation with a dysbiotic fecal microbiome, or dextran sodium sulfate administration. We identified an immune signature of αCTLA-4-mediated irAEs, including colonic neutrophil accumulation and systemic interleukin-6 (IL-6) release. IL-6 blockade combined with antibiotic treatment reduced intestinal damage and improved αCTLA-4 therapeutic efficacy in inflammation-prone mice. Intestinal immune signatures were validated in biopsies from patients with ICB colitis. Our work provides new preclinical models of αCTLA-4 intestinal irAEs, mechanistic insights into irAE development, and potential approaches to enhance ICB efficacy while mitigating irAEs.


Assuntos
Colite , Interleucina-6 , Camundongos , Animais , Qualidade de Vida , Colite/patologia , Imunoterapia , Inflamação
3.
Front Cell Dev Biol ; 10: 931387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051438

RESUMO

Glioblastoma (GBM) is a high-grade, aggressive brain tumor with dismal median survival time of 15 months. Chromosome 6q (Ch6q) is a hotspot of genomic alterations, which is commonly deleted or hyper-methylated in GBM. Two neighboring genes in this region, QKI and PRKN have been appointed as tumor suppressors in GBM. While a genetically modified mouse model (GEMM) of GBM has been successfully generated with Qk deletion in the central nervous system (CNS), in vivo genetic evidence supporting the tumor suppressor function of Prkn has not been established. In the present study, we generated a mouse model with Prkn-null allele and conditional Trp53 and Pten deletions in the neural stem cells (NSCs) and compared the tumorigenicity of this model to our previous GBM model with Qk deletion within the same system. We find that Qk but not Prkn is the potent tumor suppressor in the frequently altered Ch6q region in GBM.

4.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35653194

RESUMO

Novel therapeutic strategies targeting glioblastoma (GBM) often fail in the clinic, partly because preclinical models in which hypotheses are being tested do not recapitulate human disease. To address this challenge, we took advantage of our previously developed spontaneous Qk/Trp53/Pten (QPP) triple-knockout model of human GBM, comparing the immune microenvironment of QPP mice with that of patient-derived tumors to determine whether this model provides opportunity for gaining insights into tumor physiopathology and preclinical evaluation of therapeutic agents. Immune profiling analyses and single-cell sequencing of implanted and spontaneous tumors from QPP mice and from patients with glioma revealed intratumoral immune components that were predominantly myeloid cells (e.g., monocytes, macrophages, and microglia), with minor populations of T, B, and NK cells. When comparing spontaneous and implanted mouse samples, we found more neutrophils and T and NK cells in the implanted model. Neutrophils and T and NK cells were increased in abundance in samples derived from human high-grade glioma compared with those derived from low-grade glioma. Overall, our data demonstrate that our implanted and spontaneous QPP models recapitulate the immunosuppressive myeloid-dominant nature of the tumor microenvironment of human gliomas. Our model provides a suitable tool for investigating the complex immune compartment of gliomas.


Assuntos
Glioblastoma , Glioma , Animais , Modelos Animais de Doenças , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Macrófagos , Camundongos , Microambiente Tumoral
5.
Nat Commun ; 13(1): 3606, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750880

RESUMO

Intra-tumoral heterogeneity is a hallmark of glioblastoma that challenges treatment efficacy. However, the mechanisms that set up tumor heterogeneity and tumor cell migration remain poorly understood. Herein, we present a comprehensive spatiotemporal study that aligns distinctive intra-tumoral histopathological structures, oncostreams, with dynamic properties and a specific, actionable, spatial transcriptomic signature. Oncostreams are dynamic multicellular fascicles of spindle-like and aligned cells with mesenchymal properties, detected using ex vivo explants and in vivo intravital imaging. Their density correlates with tumor aggressiveness in genetically engineered mouse glioma models, and high grade human gliomas. Oncostreams facilitate the intra-tumoral distribution of tumoral and non-tumoral cells, and potentially the collective invasion of the normal brain. These fascicles are defined by a specific molecular signature that regulates their organization and function. Oncostreams structure and function depend on overexpression of COL1A1. Col1a1 is a central gene in the dynamic organization of glioma mesenchymal transformation, and a powerful regulator of glioma malignant behavior. Inhibition of Col1a1 eliminates oncostreams, reprograms the malignant histopathological phenotype, reduces expression of the mesenchymal associated genes, induces changes in the tumor microenvironment and prolongs animal survival. Oncostreams represent a pathological marker of potential value for diagnosis, prognosis, and treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/patologia , Camundongos , Análise Espaço-Temporal , Microambiente Tumoral/genética
6.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34138753

RESUMO

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Assuntos
Glioblastoma/imunologia , Integrinas/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Células-Tronco Neoplásicas/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Xenoenxertos , Humanos , Integrinas/genética , Células Matadoras Naturais/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/imunologia , Fator de Crescimento Transformador beta/genética
7.
Neuro Oncol ; 22(6): 806-818, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31950181

RESUMO

BACKGROUND: High-grade gliomas are aggressive and immunosuppressive brain tumors. Molecular mechanisms that regulate the inhibitory immune tumor microenvironment (TME) and glioma progression remain poorly understood. Fyn tyrosine kinase is a downstream target of the oncogenic receptor tyrosine kinase pathway and is overexpressed in human gliomas. Fyn's role in vivo in glioma growth remains unknown. We investigated whether Fyn regulates glioma initiation, growth and invasion. METHODS: We evaluated the role of Fyn using genetically engineered mouse glioma models (GEMMs). We also generated Fyn knockdown stem cells to induce gliomas in immune-competent and immune-deficient mice (nonobese diabetic severe combined immunodeficient gamma mice [NSG], CD8-/-, CD4-/-). We analyzed molecular mechanism by RNA sequencing and bioinformatics analysis. Flow cytometry was used to characterize immune cellular infiltrates in the Fyn knockdown glioma TME. RESULTS: We demonstrate that Fyn knockdown in diverse immune-competent GEMMs of glioma reduced tumor progression and significantly increased survival. Gene ontology (GO) analysis of differentially expressed genes in wild-type versus Fyn knockdown gliomas showed enrichment of GOs related to immune reactivity. However, in NSG and CD8-/- and CD4-/- immune-deficient mice, Fyn knockdown gliomas failed to show differences in survival. These data suggest that the expression of Fyn in glioma cells reduces antiglioma immune activation. Examination of glioma immune infiltrates by flow cytometry displayed reduction in the amount and activity of immune suppressive myeloid derived cells in the Fyn glioma TME. CONCLUSIONS: Gliomas employ Fyn mediated mechanisms to enhance immune suppression and promote tumor progression. We propose that Fyn inhibition within glioma cells could improve the efficacy of antiglioma immunotherapies.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Glioma/genética , Imunidade , Camundongos , Proteínas Proto-Oncogênicas c-fyn/genética , Receptores Proteína Tirosina Quinases , Microambiente Tumoral
8.
Clin Cancer Res ; 23(5): 1250-1262, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542769

RESUMO

Purpose: One likely cause of treatment failure in glioblastoma is the persistence of glioma stem-like cells (GSLCs) which are highly resistant to therapies currently employed. We found that CXCL12 has highest expression in glioma cells derived from neural progenitor cells (NPC). The development and molecular signature of NPC-derived glioblastomas were analyzed and the therapeutic effect of blocking CXCL12 was tested.Experimental Design: Tumors were induced by injecting DNA into the lateral ventricle of neonatal mice, using the Sleeping Beauty transposase method. Histology and expression of GSLC markers were analyzed during disease progression. Survival upon treatment with pharmacologic (plerixafor) or genetic inhibition of CXCR4 was analyzed. Primary neurospheres were generated and analyzed for proliferation, apoptosis, and expression of proteins regulating survival and cell-cycle progression.Results: Tumors induced from NPCs display histologic features of human glioblastoma and express markers of GSLC. In vivo, inhibiting the CXCL12/CXCR4 signaling axis results in increased survival of tumor-bearing animals. In vitro, CXCR4 blockade induces apoptosis and inhibits cell-cycle progression, downregulates molecules regulating survival and proliferation, and also blocks the hypoxic induction of HIF-1α and CXCL12. Exogenous administration of CXCL12 rescues the drug-induced decrease in proliferation.Conclusions: This study demonstrates that the CXCL12/CXCR4 axis operates in glioblastoma cells under hypoxic stress via an autocrine-positive feedback mechanism, which promotes survival and cell-cycle progression. Our study brings new mechanistic insight and encourages further exploration of the use of drugs blocking CXCL12 as adjuvant agents to target hypoxia-induced glioblastoma progression, prevent resistance to treatment, and recurrence of the disease. Clin Cancer Res; 23(5); 1250-62. ©2016 AACR.


Assuntos
Quimiocina CXCL12/genética , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , Receptores CXCR4/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neurais/patologia , Transdução de Sinais , Transposases/genética
9.
Oncotarget ; 7(39): 63020-63041, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27564115

RESUMO

Glioma cells grow in two phenotypic forms, as adherent monolayers and as free floating "neurospheres/tumorspheres", using specific media supplements. Whether each phenotype is irreversible remains unknown. Herein we show that both states are reversible using patient derived glioblastoma cell cultures (i.e., HF2303, IN859, MGG8, IN2045). Both phenotypic states differ in proliferation rate, invasion, migration, chemotaxis and chemosensitivity. We used microarrays to characterize gene expression across the patient derived glioblastoma cell cultures, to find specific inhibitors of the sphere population. Traditional chemotherapeutics (i.e., doxorubicin or paclitaxel) inhibit rapidly dividing adherent cells; it has been more challenging to inhibit the growth of the sphere phenotype. PRKG1, known to induce apoptosis when activated, is increased in all patient derived glioblastoma spheres. Stimulation of PRKG1 activity preferentially reduced cell viability in the sphere phenotype. Computational network and gene ontology analysis identified novel potential target genes linked to the PRKG1 expression node.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Glioma/patologia , Células-Tronco/patologia , Animais , Apoptose , Biomarcadores Tumorais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiotaxia , Dacarbazina/análogos & derivados , Dacarbazina/química , Doxorrubicina/administração & dosagem , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Células-Tronco Neoplásicas , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Paclitaxel/administração & dosagem , Fenótipo , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA