Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 33(9-10): 524-535, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862660

RESUMO

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD. MyoD expression oscillates in activated muscle stem cells from postnatal and adult muscle under various conditions: when the stem cells are dispersed in culture, when they remain associated with single muscle fibers, or when they reside in muscle biopsies. Unstable MyoD oscillations and long periods of sustained MyoD expression are observed in differentiating cells. Ablation of the Hes1 oscillator in stem cells interfered with stable MyoD oscillations and led to prolonged periods of sustained MyoD expression, resulting in increased differentiation propensity. This interfered with the maintenance of activated muscle stem cells, and impaired muscle growth and repair. We conclude that oscillatory MyoD expression allows the cells to remain in an undifferentiated and proliferative state and is required for amplification of the activated stem cell pool.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína MyoD/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Células Cultivadas , Camundongos , Proteína MyoD/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/genética
2.
Hum Mol Genet ; 33(2): 182-197, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37856562

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Processamento Alternativo/genética , Inflamação/patologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Células-Tronco/metabolismo
3.
Cell Tissue Res ; 395(3): 271-283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183459

RESUMO

In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.


Assuntos
Fosfoglicerato Desidrogenase , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542301

RESUMO

FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.


Assuntos
Distrofia Muscular Facioescapuloumeral , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo
5.
Exp Cell Res ; 411(1): 112906, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740639

RESUMO

Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Doenças Musculares/patologia , Distrofias Musculares/patologia , Mutação , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/patologia , Perfilação da Expressão Gênica , Humanos , Doenças Musculares/genética , Distrofias Musculares/genética , Células Satélites de Músculo Esquelético/metabolismo
6.
Hum Mol Genet ; 29(16): 2746-2760, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32744322

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant myopathy characterized by slowly progressive skeletal muscle weakness and wasting. While a regenerative response is often provoked in many muscular dystrophies, little is known about whether a regenerative response is regularly elicited in FSHD muscle, prompting this study. For comparison, we also examined the similarly slowly progressing myotonic dystrophy type 2 (DM2). To first investigate regeneration at the transcriptomic level, we used the 200 human gene Hallmark Myogenesis list. This myogenesis biomarker was elevated in FSHD and control healthy myotubes compared to their myoblast counterparts, so is higher in myogenic differentiation. The myogenesis biomarker was also elevated in muscle biopsies from most independent FSHD, DM2 or Duchenne muscular dystrophy (DMD) studies compared to control biopsies, and on meta-analysis for each condition. In addition, the myogenesis biomarker was a robust binary discriminator of FSHD, DM2 and DMD from controls. We also analysed muscle regeneration at the protein level by immunolabelling muscle biopsies for developmental myosin heavy chain. Such immunolabelling revealed one or more regenerating myofibres in 76% of FSHD muscle biopsies from quadriceps and 91% from tibialis anterior. The mean proportion of regenerating myofibres per quadriceps biopsy was 0.48%, significantly less than 1.72% in the tibialis anterior. All DM2 muscle biopsies contained regenerating myofibres, with a mean of 1.24% per biopsy. Muscle regeneration in FSHD was correlated with the pathological hallmarks of fibre size variation, central nucleation, fibrosis and necrosis/regeneration/inflammation. In summary, the regenerative response in FSHD muscle biopsies correlates with the severity of pathology.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Regeneração/genética , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/genética , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Índice de Gravidade de Doença , Transcriptoma/genética
7.
Hum Mol Genet ; 29(14): 2285-2299, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32242220

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.


Assuntos
Proteínas de Homeodomínio/genética , Inflamação/genética , Distrofia Muscular Facioescapuloumeral/genética , Transcriptoma/genética , Biomarcadores/metabolismo , Biópsia , Linhagem Celular , Feminino , Regulação da Expressão Gênica/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia
8.
Hum Mol Genet ; 28(13): 2224-2236, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067297

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. The condition is linked to hypomethylation of the D4Z4 macrosatellite repeat at chromosome 4q35, leading to epigenetic derepression of the transcription factor DUX4; coupled with a permissive 4qA haplotype supplying a poly(A) signal. DUX4 may drive FSHD pathology via both induction of target genes and inhibition of the function of the myogenic master regulator PAX7. Biomarkers for FSHD have focused on DUX4 target gene expression. We have, however, reported that PAX7 target gene repression is a hallmark of FSHD skeletal muscle. Here we demonstrate that PAX7 target gene repression is an equivalent biomarker to DUX4 target gene expression when considering RNA-Sequencing data from magnetic resonance imaging-guided muscle biopsies. Moreover, PAX7 target gene repression correlates with active disease, independent to DUX4 target gene expression. PAX7 target genes are also repressed in RNA-Sequencing data from single cells, representing a significantly better biomarker of FSHD cells than DUX4 target gene expression. Importantly, PAX7 target gene repression is a significant biomarker in the majority of FSHD cells that are DUX4 target gene negative, and on which the DUX4 biomarker is indiscriminate. To facilitate the evaluation of validated biomarkers we provide a simple tool that outputs biomarker values from a normalized expression data matrix. In summary, PAX7 target gene repression in FSHD correlates with disease severity, independently of DUX4 target gene expression. At the single-cell level, PAX7 target gene repression can efficiently discriminate FSHD cells, even when no DUX4 target genes are detectable.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Fator de Transcrição PAX7/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Fator de Transcrição PAX7/genética , Análise de Sequência de RNA , Análise de Célula Única , Adulto Jovem
9.
Hum Mol Genet ; 28(8): 1244-1259, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30462217

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to epigenetic derepression of D4Z4 repeats on chromosome 4q, leading to ectopic DUX4 expression. FSHD patient myoblasts have defective myogenic differentiation, forming smaller myotubes with reduced myosin content. However, molecular mechanisms driving such disrupted myogenesis in FSHD are poorly understood. We performed high-throughput morphological analysis describing FSHD and control myogenesis, revealing altered myogenic differentiation results in hypotrophic myotubes. Employing polynomial models and an empirical Bayes approach, we established eight critical time points during which human healthy and FSHD myogenesis differ. RNA-sequencing at these eight nodal time points in triplicate, provided temporal depth for a multivariate regression analysis, allowing assessment of interaction between progression of differentiation and FSHD disease status. Importantly, the unique size and structure of our data permitted identification of many novel FSHD pathomechanisms undetectable by previous approaches. For further analysis here, we selected pathways that control mitochondria: of interest considering known alterations in mitochondrial structure and function in FSHD muscle, and sensitivity of FSHD cells to oxidative stress. Notably, we identified suppression of mitochondrial biogenesis, in particular via peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), the cofactor and activator of oestrogen-related receptor α (ERRα). PGC1α knock-down caused hypotrophic myotubes to form from control myoblasts. Known ERRα agonists and safe food supplements biochanin A, daidzein or genistein, each rescued the hypotrophic FSHD myotube phenotype. Together our work describes transcriptomic changes in high resolution that occur during myogenesis in FSHD ex vivo, identifying suppression of the PGC1α-ERRα axis leading to perturbed myogenic differentiation, which can effectively be rescued by readily available food supplements.


Assuntos
Distrofia Muscular Facioescapuloumeral/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Receptores de Estrogênio/genética , Adulto , Teorema de Bayes , Diferenciação Celular/genética , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Mioblastos/metabolismo , Miopatias Congênitas Estruturais/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Análise de Sequência de RNA , Transcriptoma/genética , Receptor ERRalfa Relacionado ao Estrogênio
10.
J Cell Sci ; 132(13)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31138678

RESUMO

VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Neoplasias/metabolismo , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Transcriptoma/genética
11.
Semin Cell Dev Biol ; 72: 19-32, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29127046

RESUMO

Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.


Assuntos
Músculo Esquelético/metabolismo , Proteína MyoD/genética , Fator Regulador Miogênico 5/genética , Fatores de Regulação Miogênica/genética , Miogenina/genética , Células Satélites de Músculo Esquelético/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Regeneração/genética
12.
Acta Neuropathol ; 138(3): 477-495, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218456

RESUMO

Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.


Assuntos
Citoesqueleto/patologia , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Miopatias da Nemalina/patologia , Adulto , Idoso , Animais , Núcleo Celular/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Miopatias da Nemalina/fisiopatologia , Adulto Jovem
13.
Stem Cells ; 36(3): 458-466, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29230914

RESUMO

Notch signaling is essential to maintain skeletal muscle stem cells in quiescence. However, the precise roles of different Notch receptors are incompletely defined. Here, we demonstrate a role for Notch3 (N3) in the self-renewal of muscle stem cells. We found that N3 is active in quiescent C2C12 reserve cells (RCs), and N3 over-expression and knockdown studies in C2C12 and primary satellite cells reveal a role in self-renewal. The Notch ligand Delta-like 4 (Dll4) is expressed by newly formed myotubes and interaction with this ligand is sufficient to maintain N3 activity in quiescent C2C12 RCs to prevent activation and progression into the cell cycle. Thus, our data suggest a model whereby during regeneration, expression of Dll4 by nascent muscle fibers triggers N3 signaling in associated muscle stem cells to recruit them to quiescence, thereby renewing the stem cell pool. Stem Cells 2018;36:458-466.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mioblastos Esqueléticos/metabolismo , Receptor Notch3/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/citologia , Receptor Notch3/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo
14.
J Cell Sci ; 129(20): 3816-3831, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27744317

RESUMO

Skeletal muscle wasting in facioscapulohumeral muscular dystrophy (FSHD) results in substantial morbidity. On a disease-permissive chromosome 4qA haplotype, genomic and/or epigenetic changes at the D4Z4 macrosatellite repeat allows transcription of the DUX4 retrogene. Analysing transgenic mice carrying a human D4Z4 genomic locus from an FSHD-affected individual showed that DUX4 was transiently induced in myoblasts during skeletal muscle regeneration. Centromeric to the D4Z4 repeats is an inverted D4Z4 unit encoding DUX4c. Expression of DUX4, DUX4c and DUX4 constructs, including constitutively active, dominant-negative and truncated versions, revealed that DUX4 activates target genes to inhibit proliferation and differentiation of satellite cells, but that it also downregulates target genes to suppress myogenic differentiation. These transcriptional changes elicited by DUX4 in mouse have significant overlap with genes regulated by DUX4 in man. Comparison of DUX4 and DUX4c transcriptional perturbations revealed that DUX4 regulates genes involved in cell proliferation, whereas DUX4c regulates genes engaged in angiogenesis and muscle development, with both DUX4 and DUX4c modifing genes involved in urogenital development. Transcriptomic analysis showed that DUX4 operates through both target gene activation and repression to orchestrate a transcriptome characteristic of a less-differentiated cell state.


Assuntos
Diferenciação Celular/genética , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/genética , Transcriptoma/genética , Animais , Apoptose/genética , Forma Celular/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/metabolismo , Ativação Transcricional/genética
15.
Stem Cells ; 35(8): 1958-1972, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28589555

RESUMO

Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1-/- ) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre-ERT2/+ : Yapfl °x/fl °x :Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress-E-MTAB-5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange-PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt-cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells 2017;35:1958-1972.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Músculo Esquelético/citologia , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Fusão Celular , Proliferação de Células , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Via de Sinalização Hippo , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Transativadores , Via de Sinalização Wnt/genética , Proteínas de Sinalização YAP
16.
Exp Cell Res ; 333(2): 228-237, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25773777

RESUMO

Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade.


Assuntos
Proliferação de Células , Células Satélites de Músculo Esquelético/fisiologia , Zinco/fisiologia , Animais , Linhagem Celular , Insulina/fisiologia , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
PLoS Genet ; 9(4): e1003415, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593020

RESUMO

Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy caused by decreased epigenetic repression of the D4Z4 macrosatellite repeats and ectopic expression of DUX4, a retrogene encoding a germline transcription factor encoded in each repeat. Unaffected individuals generally have more than 10 repeats arrayed in the subtelomeric region of chromosome 4, whereas the most common form of FSHD (FSHD1) is caused by a contraction of the array to fewer than 10 repeats, associated with decreased epigenetic repression and variegated expression of DUX4 in skeletal muscle. We have generated transgenic mice carrying D4Z4 arrays from an FSHD1 allele and from a control allele. These mice recapitulate important epigenetic and DUX4 expression attributes seen in patients and controls, respectively, including high DUX4 expression levels in the germline, (incomplete) epigenetic repression in somatic tissue, and FSHD-specific variegated DUX4 expression in sporadic muscle nuclei associated with D4Z4 chromatin relaxation. In addition we show that DUX4 is able to activate similar functional gene groups in mouse muscle cells as it does in human muscle cells. These transgenic mice therefore represent a valuable animal model for FSHD and will be a useful resource to study the molecular mechanisms underlying FSHD and to test new therapeutic intervention strategies.


Assuntos
Epigênese Genética/genética , Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral/genética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Células Cultivadas , Cromatina/genética , Metilação de DNA/genética , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo
18.
Dev Biol ; 386(1): 135-51, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24275324

RESUMO

Satellite cells are resident stem cells of skeletal muscle, supplying myoblasts for post-natal muscle growth, hypertrophy and repair. Many regulatory networks control satellite cell function, which includes EGF signalling via the ErbB family of receptors. Here we investigated the role of ErbB3 binding protein-1 (Ebp1) in regulation of myogenic stem cell proliferation and differentiation. Ebp1 is a well-conserved DNA/RNA binding protein that is implicated in cell growth, apoptosis and differentiation in many cell types. Of the two main Ebp1 isoforms, only p48 was expressed in satellite cells and C2C12 myoblasts. Although not present in quiescent satellite cells, p48 was strongly induced during activation, remaining at high levels during proliferation and differentiation. While retroviral-mediated over-expression of Ebp1 had only minor effects, siRNA-mediated Ebp1 knockdown inhibited both proliferation and differentiation of satellite cells and C2C12 myoblasts, with a clear failure of myotube formation. Ebp1-knockdown significantly reduced ErbB3 receptor levels, yet over-expression of ErbB3 in Ebp1 knockdown cells did not rescue differentiation. Ebp1 was also expressed by muscle cells during developmental myogenesis in mouse. Since Ebp1 is well-conserved between mouse and chick, we switched to chick to examine its role in muscle formation. In chick embryo, Ebp1 was expressed in the dermomyotome, and myogenic differentiation of muscle progenitors was inhibited by specific Ebp1 down-regulation using shRNA electroporation. These observations demonstrate a conserved function of Ebp1 in the regulation of embryonic muscle progenitors and adult muscle stem cells, which likely operates independently of ErbB3 signaling.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/fisiologia , Músculos/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco/citologia , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Proteínas de Ligação a DNA , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Ligação a RNA , Receptor ErbB-3/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
19.
Hum Mol Genet ; 22(14): 2852-69, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23535822

RESUMO

Mutations in lamin A/C result in a range of tissue-specific disorders collectively called laminopathies. Of these, Emery-Dreifuss and Limb-Girdle muscular dystrophy 1B mainly affect striated muscle. A useful model for understanding both laminopathies and lamin A/C function is the Lmna(-/-) mouse. We found that skeletal muscle growth and muscle satellite (stem) cell proliferation were both reduced in Lmna(-/-) mice. Lamins A and C associate with lamina-associated polypeptide 2 alpha (Lap2α) and the retinoblastoma gene product, pRb, to regulate cell cycle exit. We found Lap2α to be upregulated in Lmna(-/-) myoblasts (MBs). To specifically test the contribution of elevated Lap2α to the phenotype of Lmna(-/-) mice, we generated Lmna(-/-)Lap2α(-/-) mice. Lifespan and body mass were increased in Lmna(-/-)Lap2α(-/-) mice compared with Lmna(-/-). Importantly, the satellite cell proliferation defect was rescued, resulting in improved myogenesis. Lmna(-/-) MBs also exhibited increased levels of Smad2/3, which were abnormally distributed in the cell and failed to respond to TGFß1 stimulation as in control cells. However, using SIS3 to inhibit signaling via Smad3 reduced cell death and augmented MB fusion. Together, our results show that perturbed Lap2α/pRb and Smad2/3 signaling are important regulatory pathways mediating defective muscle growth in Lmna(-/-) mice, and that inhibition of either pathway alone or in combination can ameliorate this deleterious phenotype.


Assuntos
Proteínas de Ligação a DNA/deficiência , Lamina Tipo A/deficiência , Proteínas de Membrana/deficiência , Músculo Esquelético/crescimento & desenvolvimento , Distrofia Muscular de Emery-Dreifuss/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Humanos , Lamina Tipo A/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
20.
Development ; 139(16): 2845-56, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22833472

RESUMO

Following their discovery in 1961, it was speculated that satellite cells were dormant myoblasts, held in reserve until required for skeletal muscle repair. Evidence for this accumulated over the years, until the link between satellite cells and the myoblasts that appear during muscle regeneration was finally established. Subsequently, it was demonstrated that, when grafted, satellite cells could also self-renew, conferring on them the coveted status of 'stem cell'. The emergence of other cell types with myogenic potential, however, questioned the precise role of satellite cells. Here, we review recent recombination-based studies that have furthered our understanding of satellite cell biology. The clear consensus is that skeletal muscle does not regenerate without satellite cells, confirming their pivotal and non-redundant role.


Assuntos
Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Linhagem da Célula , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Fator de Transcrição PAX7/deficiência , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/fisiologia , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Nicho de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA