Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555266

RESUMO

Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.


Assuntos
Materiais Biocompatíveis , Células-Tronco Mesenquimais , Animais , Materiais Biocompatíveis/farmacologia , Álcool de Polivinil/farmacologia , Álcool de Polivinil/química , Vitamina A/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Proliferação de Células , Hidrogéis/farmacologia , Hidrogéis/química , Mamíferos
2.
Phys Chem Chem Phys ; 23(40): 22923-22935, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617940

RESUMO

The performance of fibrous membrane composites fabricated via electrospinning is strongly influenced by the solution's properties, process variables and ambient conditions, although a precise mechanism for controlling the properties of the resulting composite has remained elusive. In this work, we focus on the fabrication of electrospun poly(vinylpyrrolidone) (PVP) fibers, by varying both the polymer concentration and the mixture of ethanol (EtOH) and dimethylformamide (DMF) used as solvent. The impact of the solvent composition on the structural properties is assessed by a combined experimental and theoretical approach, employing scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheology, Fourier-transform infrared spectroscopy (FTIR) and stress-strain curves obtained from tensile tests to characterize the fibrous membranes produced, and density functional theory (DFT) calculations to explain the solvent's affect on PVP crystallization. We establish a morphological phase diagram, and propose a possible mechanism based on the measured fiber diameter distribution, the viscoelastic properties of the precursor solution, the correlation between the functional groups and the mechanical properties, the thermal transitions and the degree of crystallinity. We also employ DFT calculations to model the polymer coverage at equilibrium of a PVP polymer chain in the presence of EtOH/DMF solvent mixtures to corroborate the crucial role their O or -OH groups play in achieving high PVP coverages and promoting the stability of the resulting fiber. These findings will be valuable to researchers interested in predicting, modulating, and controlling both a fiber's morphology and its concomitant physico-chemical properties.

3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681873

RESUMO

In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and ß-tricalcium phosphate (ß-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/ß-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.


Assuntos
Fosfatos de Cálcio/química , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Poliésteres/química , Fosfatase Alcalina/metabolismo , Adesão Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Osteogênese/genética , Osteogênese/fisiologia , Porosidade , Impressão Tridimensional , Alicerces Teciduais , Microtomografia por Raio-X
4.
J Environ Manage ; 300: 113737, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536739

RESUMO

Persistent Organic Pollutants (POPs) have become a very serious issue for the environment because of their toxicity, resistance to conventional degradation mechanisms, and capacity to bioconcentrate, bioaccumulate and biomagnify. In this review article, the safety, regulatory, and remediation aspects of POPs including aromatic, chlorinated, pesticides, brominated, and fluorinated compounds, are discussed. Industrial and agricultural activities are identified as the main sources of these harmful chemicals, which are released to air, soil and water, impacting on social and economic development of society at a global scale. The main types of POPs are presented, illustrating their effects on wildlife and human beings, as well as the ways in which they contaminate the food chain. Some of the most promising and innovative technologies developed for the removal of POPs from water are discussed, contrasting their advantages and disadvantages with those of more conventional treatment processes. The promising methods presented in this work include bioremediation, advanced oxidation, ionizing radiation, and nanotechnology. Finally, some alternatives to define more efficient approaches to overcome the impacts that POPs cause in the hydric sources are pointed out. These alternatives include the formulation of policies, regulations and custom-made legislation for controlling the use of these pollutants.


Assuntos
Poluentes Ambientais , Praguicidas , Cadeia Alimentar , Humanos , Poluentes Orgânicos Persistentes , Praguicidas/análise , Solo
5.
Molecules ; 25(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050601

RESUMO

The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19's survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.


Assuntos
Betacoronavirus/isolamento & purificação , Pesquisa Biomédica/normas , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Gerenciamento Clínico , Humanos , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2
6.
Langmuir ; 29(32): 10247-53, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23848357

RESUMO

This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.


Assuntos
Ácido Hialurônico/química , Nanotubos de Carbono/química , Géis/síntese química , Géis/química , Humanos , Cinética
7.
Pharmaceutics ; 15(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37514030

RESUMO

Several approaches have evolved to facilitate the exploration of hydrogel systems in biomedical research. In this sense, poly(vinyl alcohol) (PVA) has been widely used in hydrogel (HG) fabrication for several therapeutic applications. The biological properties of PVA hydrogels (PVA-HGs) are highly dependent on their interaction with protein receptors and extracellular matrix (mainly calcium) deposition, for which there is not enough evidence from existing research yet. Thus, for the first time, the functional properties, like protein and mineral interactions, related to the proliferation of mesenchymal stem cells (MSCs) by silver nanoparticle (AgNP)-loaded PVA hydrogels (AgNPs-PVA-HGs) were investigated in the present study. The UV absorption spectrum and TEM microscopic results showed a maximum absorbance of synthesized AgNPs at 409 nm, with an average particle size of 14.5 ± 2.5 nm, respectively. The functional properties, such as the calcium-binding and the protein adsorption of PVA-HG, were accelerated by incorporating AgNPs; however, the swelling properties of the HGs were reduced by AgNPs, which might be due to the masking of the free functional groups (hydroxyl groups of PVA) by AgNPs. SEM images showed the presence of AgNPs with a more porous structure in the HGs. The proliferative effect of MSCs increased over culture time from day 1 to day 7, and the cell proliferative effect was upregulated by HGs with more pronounced AgNPs-PVA-HG. In addition, both HGs did not produce any significant cytotoxicity in the MSCs. The histological (bright light and H&E staining) and fluorescence microscopic images showed the presence of a cytoskeleton and the fibrillar structure of the MSCs, and the cells adhered more firmly to all HGs. More fibrillar bipolar and dense fibrillar structures were seen in the day 1 and day 7 cultures, respectively. Interestingly, the MSCs cultured on AgNPs-PVA-HG produced extracellular matrix deposition on day 7. Accordingly, the present results proved the biocompatibility of AgNPs-PVA-HG as a suitable system for culturing mammalian stem cells for regenerative tissue applications.

8.
Bioengineering (Basel) ; 10(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37508831

RESUMO

Plant fibers possess high strength, high fracture toughness and elasticity, and have proven useful because of their diversity, versatility, renewability, and sustainability. For biomedical applications, these natural fibers have been used as reinforcement for biocomposites to infer these hybrid biomaterials mechanical characteristics, such as stiffness, strength, and durability. The reinforced hybrid composites have been tested in structural and semi-structural biodevices for potential applications in orthopedics, prosthesis, tissue engineering, and wound dressings. This review introduces plant fibers, their properties and factors impacting them, in addition to their applications. Then, it discusses different methodologies used to prepare hybrid composites based on these widespread, renewable fibers and the unique properties that the obtained biomaterials possess. It also examines several examples of hybrid composites and their biomedical applications. Finally, the findings are summed up and some thoughts for future developments are provided. Overall, the focus of the present review lies in analyzing the design, requirements, and performance, and future developments of hybrid composites based on plant fibers.

9.
Biomater Sci ; 11(10): 3461-3468, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36475559

RESUMO

Hydrogels are promising candidates for wound healing bandages because they can mimic the native skin microenvironment. Additionally, there is increasing growth in the use of naturally derived materials and plant-based biomaterials to produce healthcare products with healing purposes because of their biocompatibility and biodegradation properties. In this study, cellulose extracted from biodiverse sources in Ecuador was used as the raw material for the fabrication of hydrogels with enhanced antifouling properties. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the cellulose and hydrogels. In vitro and ex vivo tests were performed to evaluate the antimicrobial activity of hydrogels against Gram-negative bacteria as a model. Finally, the hydrogel synthesized with cellulose extracted from pitahaya showed improved antibacterial activity when applied over pigskin as a proof of concept for wound dressing. Therefore, the present results suggest that cellulose-based hydrogels are good candidates for application as wound dressings.


Assuntos
Celulose , Hidrogéis , Celulose/farmacologia , Celulose/química , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/química , Bandagens , Pele
10.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376351

RESUMO

Nowadays, there exists a huge interest in producing innovative, high-performance, biofunctional, and cost-efficient electrospun biomaterials based on the association of biocompatible polymers with bioactive molecules. Such materials are well-known to be promising candidates for three-dimensional biomimetic systems for wound healing applications because they can mimic the native skin microenvironment; however, many open questions such as the interaction mechanism between the skin and the wound dressing material remain unclear. Recently, several biomolecules were intended for use in combination with poly(vinyl alcohol) (PVA) fiber mats to improve their biological response; nevertheless, retinol, an important biomolecule, has not been combined yet with PVA to produce tailored and biofunctional fiber mats. Based on the abovementioned concept, the present work reported the fabrication of retinol-loaded PVA electrospun fiber mats (RPFM) with a variable content of retinol (0 ≤ Ret ≤ 25 wt.%), and their physical-chemical and biological characterization. SEM results showed that fiber mats exhibited diameters distribution ranging from 150 to 225 nm and their mechanical properties were affected with the increasing of retinol concentrations. In addition, fiber mats were able to release up to 87% of the retinol depending on both the time and the initial content of retinol. The cell culture results using primary mesenchymal stem cell cultures proved the biocompatibility of RPFM as confirmed by their effects on cytotoxicity (low level) and proliferation (high rate) in a dose-dependent manner. Moreover, the wound healing assay suggested that the optimal RPFM with retinol content of 6.25 wt.% (RPFM-1) enhanced the cell migratory activity without altering its morphology. Accordingly, it is demonstrated that the fabricated RPFM with retinol content below the threshold 0 ≤ Ret ≤ 6.25 wt.% would be an appropriate system for skin regenerative application.

11.
ACS Omega ; 7(24): 20457-20476, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35935292

RESUMO

The development of sustainable, cost-efficient, and high-performance nanofluids is one of the current research topics within drilling applications. The inclusion of tailorable nanoparticles offers the possibility of formulating water-based fluids with enhanced properties, providing unprecedented opportunities in the energy, oil, gas, water, or infrastructure industries. In this work, the most recent and relevant findings related with the development of customizable nanofluids are discussed, focusing on those based on the incorporation of 2D (two-dimensional) nanoparticles and environmentally friendly precursors. The advantages and drawbacks of using 2D layered nanomaterials including but not limited to silicon nano-glass flakes, graphene, MoS2, disk-shaped Laponite nanoparticles, layered magnesium aluminum silicate nanoparticles, and nanolayered organo-montmorillonite are presented. The current formulation approaches are listed, as well as their physicochemical characterization: rheology, viscoelastic properties, and filtration properties (fluid losses). The most influential factors affecting the drilling fluid performance, such as the pH, temperature, ionic strength interaction, and pressure, are also debated. Finally, an overview about the simulation at the microscale of fluids flux in porous media is presented, aiming to illustrate the approaches that could be taken to supplement the experimental efforts to research the performance of drilling muds. The information discussed shows that the addition of 2D nanolayered structures to drilling fluids promotes a substantial improvement in the rheological, viscoelastic, and filtration properties, additionally contributing to cuttings removal, and wellbore stability and strengthening. This also offers a unique opportunity to modulate and improve the thermal and lubrication properties of the fluids, which is highly appealing during drilling operations.

12.
Bioengineering (Basel) ; 9(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35877372

RESUMO

In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.

13.
Polymers (Basel) ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35012127

RESUMO

Using cyclodextrins (CDs) in packaging technologies helps volatile or bioactive molecules improve their solubility, to guarantee the homogeneous distribution of the complexed molecules, protecting them from volatilization, oxidation, and temperature fluctuations when they are associated with polymeric matrices. This technology is also suitable for the controlled release of active substances and allows the exploration of their association with biodegradable polymer targeting to reduce the negative environmental impacts of food packaging. Here, we present a fresh look at the current status of and future prospects regarding the different strategies used to associate cyclodextrins and their derivatives with polymeric matrices to fabricate sustainable and biodegradable active food packaging (AFP). Particular attention is paid to the materials and the fabrication technologies available to date. In addition, the use of cutting-edge strategies, including the trend of nanotechnologies in active food packaging, is emphasized. Furthermore, a critical view on the risks to human health and the associated updated legislation is provided. Some of the more representative patents and commercial products that currently use AFP are also listed. Finally, the current and future research challenges which must be addressed are discussed.

14.
Colloids Surf B Biointerfaces ; 203: 111767, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878553

RESUMO

Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.


Assuntos
Grafite , Nanoestruturas , Nanotecnologia
15.
J Phys Condens Matter ; 32(41): 415901, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503015

RESUMO

Understanding, optimizing, and controlling the optical absorption process, exciton gemination, and electron-hole separation and conduction in low dimensional systems is a fundamental problem in materials science. However, robust and efficient methods capable of modelling the optical absorbance of low dimensional macromolecular systems and providing physical insight into the processes involved have remained elusive. We employ a highly efficient linear combination of atomic orbitals (LCAOs) representation of the Kohn-Sham (KS) orbitals within time dependent density functional theory (TDDFT) in the reciprocal space (k) and frequency (ω) domains, as implemented within our LCAO-TDDFT-k-ω code, applying either a priori or a posteriori the derivative discontinuity correction of the exchange functional Δx to the KS eigenenergies as a scissors operator. In so doing we are able to provide a semi-quantitative description of the photoabsorption cross section, conductivity, and dielectric function for prototypical 0D, 1D, 2D, and 3D systems within the optical limit (‖q‖ → 0+) as compared to both available measurements and from solving the Bethe-Salpeter equation with quasiparticle G 0 W 0 eigenvalues (G 0 W 0-BSE). Specifically, we consider 0D fullerene (C60), 1D metallic (10, 0) and semiconducting (10, 10) single-walled carbon nanotubes, 2D graphene (Gr) and phosphorene (Pn), and 3D rutile (R-TiO2) and anatase (A-TiO2). For each system, we also employ the spatially and energetically resolved electron-hole spectral density to provide direct physical insight into the nature of their optical excitations. These results demonstrate the reliability, applicability, efficiency, and robustness of our LCAO-TDDFT-k-ω code, and open the pathway to the computational design of macromolecular systems for optoelectronic, photovoltaic, and photocatalytic applications in silico.

16.
Sci Rep ; 9(1): 2642, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804400

RESUMO

Ecuadorian pottery is renowned for its beauty and the particularly rich colour of its pigments. However, a major challenge for art historians is the proper assessment of the provenance of individual pieces due to their lack of archaeological context. Of particular interest is the Jama-Coaque culture, which produced fascinating anthropomorphic and zoomorphic pottery from ca. 240 B.C. until the Spanish Conquest of 1532 A.D. in the coastal region of Ecuador. Using a combination of microscopic and spectroscopic techniques, i.e., transmission electron microscopy (TEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM); we are able to characterize these pieces. We have found several kinds of iron-oxide based nanostructures in all the colour pigments we investigated for the Jama-Coaque culture, suggesting the same unique volcanic source material was used for their clay. Such nanostructures were absent from the pigment samples studied from other contemporary coastal-Ecuadorian cultures, i.e., the Tumaco-La Tolita and Bahía cultures. In the yellow pigments of goethite we find carbon nanofibres, indicating these pigments were subjected to a thermal treatment. Finally, in the blue, green, and black pigments we detect modern pigments (phthalocyanine blue, lithopone, and titanium white), suggesting modern restoration. Our results demonstrate the power of TEM, Raman, FTIR, EDX, and SEM archaeometric techniques for characterizing pieces without a clear archaeological context. Furthermore, the characterization of nanostructures present in such pieces could be used as a possible fingerprint for a provenance study.

17.
Philos Trans A Math Phys Eng Sci ; 371(1988): 20120499, 2013 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-23459968

RESUMO

Liquid crystal ordering is an opportunity to develop novel materials and applications with spontaneously aligned nanotubes or graphene particles. Nevertheless, achieving high orientational order parameter and large monodomains remains a challenge. In addition, our restricted knowledge of the structure of the currently available materials is a limitation for fundamental studies and future applications. This paper presents recent methodologies that have been developed to achieve large monodomains of nematic liquid crystals. These allow quantification and increase of their order parameters. Nematic ordering provides an efficient way to prepare conductive films that exhibit anisotropic properties. In particular, it is shown how the electrical conductivity anisotropy increases with the order parameter of the nematic liquid crystal. The order parameter can be tuned by controlling the length and entanglement of the nanotubes. In the second part of the paper, recent results on graphene liquid crystals are reported. The possibility to obtain water-based liquid crystals stabilized by surfactant molecules is demonstrated. Structural and thermodynamic characterizations provide indirect but statistical information on the dimensions of the graphene flakes. From a general point of view, this work presents experimental approaches to optimize the use of nanocarbons as liquid crystals and provides new methodologies for the still challenging characterization of such materials.


Assuntos
Cristalização/métodos , Grafite/química , Cristais Líquidos/química , Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Teste de Materiais , Tamanho da Partícula
18.
J Phys Chem Lett ; 3(17): 2425-30, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-26292127

RESUMO

Graphene oxide (GO) flakes dissolved in water can spontaneously form liquid crystals. Liquid crystallinity presents an opportunity to process graphene materials into macroscopic assemblies with long-range ordering, but most graphene electronic functionalities are lost in oxidation treatments. Reduction of GO allows recovering functionalities and makes reduced graphene oxide (RGO) of greater interest. Unfortunately, chemical reduction of GO generally results in the aggregation of the flakes, with no liquid crystallinity observed. We report in the present work liquid crystals made of RGO. The addition of surfactants in appropriate conditions is used to stabilize the RGO flakes against aggregation maintaining their ability to form water-based liquid crystals. Structural and thermodynamical studies allow the dimensions of the flakes to be deduced. It is found that the thickness and diameter of RGO flakes are close to that of neat GO flakes.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 062701, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304136

RESUMO

An assembly of packed and oriented rodlike particles exhibit anisotropic physical properties. We investigate in the present work the anisotropic conductivity of films made of intrinsically conducting rods. These films are obtained from more or less ordered carbon nanotube liquid crystals. Their orientational order parameter is measured by polarized Raman spectroscopy. A relationship between the anisotropy of surface conductivity and orientational order parameter is determined. The experimental results are accounted for by a model that takes into account the number of intertube contacts and density of conductive pathways in different directions, as introduced by J. Fischer et al. for magnetically aligned nanotubes. We find that a good agreement, without any fitting parameter, of the proposed model and experiments is obtained when we consider a two-dimensional (2D) Gaussian distribution of the nanotube orientation. The conductivities parallel and perpendicular to the nematic director differ by almost an order of magnitude. This anisotropy is much greater than that of conventional dielectric liquid crystals, where the behavior is governed by the mobility anisotropy of ionic current carriers. The present results do not depend on the intrinsic properties of the nanotubes and are expected to be relevant for other assemblies of conducting rodlike particles, such as metallic or semi-conducting nanowires and ribbons.

20.
Nano Lett ; 8(12): 4103-7, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19367925

RESUMO

Lyotropic nematic aqueous suspensions of single-wall carbon nanotubes can be uniformly aligned in thin cells by shearing. Homogeneous anisotropic thin films of nanotubes can be prepared by drying the nematic. Optical transmission between parallel or crossed polarizers is measured and described in order to estimate the dichroic ratio. The order parameter is measured using polarized Raman spectroscopy and found to be quite weak due to entanglement of the nanotubes and/or to an intrinsic viscoelastic behavior of the nanotube suspensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA