Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 379, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650006

RESUMO

BACKGROUND: TAS-102 (Lonsurf®) is an oral fluoropyrimidine consisting of a combination of trifluridine (a thymidine analog) and tipiracil (a thymidine phosphorylation inhibitor). The drug is effective in metastatic colorectal cancer (mCRC) patients refractory to fluorouracil, irinotecan and oxaliplatin. This study is a real-world analysis, investigating the interplay of genotype/phenotype in relation to TAS-102 sensitivity. METHODS: Forty-seven consecutive mCRC patients were treated with TAS-102 at the National Cancer Institute of Naples from March 2019 to March 2021, at a dosage of 35 mg/m2, twice a day, in cycles of 28 days (from day 1 to 5 and from day 8 to 12). Clinical-pathological parameters were described. Activity was evaluated with RECIST criteria (v1.1) and toxicity with NCI-CTC (v5.0). Survival was depicted through the Kaplan-Meyer curves. Genetic features of patients were evaluated with Next Generation Sequencing (NGS) through the Illumina NovaSeq 6000 platform and TruSigt™Oncology 500 kit. RESULTS: Median age of patients was 65 years (range: 46-77). Forty-one patients had 2 or more metastatic sites and 38 patients underwent to more than 2 previous lines of therapies. ECOG (Eastern Cooperative Oncology Group) Performance Status (PS) was 2 in 19 patients. The median number of TAS-102 cycles was 4 (range: 2-12). The most frequent toxic event was neutropenia (G3/G4 in 16 patients). There were no severe (> 3) non-haematological toxicities or treatment-related deaths. Twenty-six patients experienced progressive disease (PD), 21 stable disease (SD). Three patients with long-lasting disease control (DC: complete, partial responses or stable disease) shared an FGFR4 (p.Gly388Arg) mutation. Patients experiencing DC had more frequently a low tumour growth rate (P = 0.0306) and an FGFR4 p.G388R variant (P < 0.0001). The FGFR4 Arg388 genotype was associated with better survival (median: 6.4 months) compared to the Gly388 genotype (median: 4 months); the HR was 0.25 (95% CI 0.12- 0.51; P = 0.0001 at Log-Rank test). CONCLUSIONS: This phenotype/genotype investigation suggests that the FGFR4 p.G388R variant may serve as a new marker for identifying patients who are responsive to TAS-102. A mechanistic hypothesis is proposed to interpret these findings.


Assuntos
Neoplasias Colorretais , Combinação de Medicamentos , Metástase Neoplásica , Pirrolidinas , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos , Timina , Trifluridina , Uracila , Humanos , Trifluridina/uso terapêutico , Trifluridina/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Pirrolidinas/uso terapêutico , Masculino , Feminino , Uracila/análogos & derivados , Uracila/uso terapêutico , Uracila/efeitos adversos , Pessoa de Meia-Idade , Idoso , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Polimorfismo de Nucleotídeo Único/genética
2.
J Transl Med ; 22(1): 582, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902710

RESUMO

BACKGROUND: Exosomes are nanosized vesicles released from all cells into surrounding biofluids, including cancer cells, and represent a very promising direction in terms of minimally invasive approaches to early disease detection. They carry tumor-specific biological contents such as DNA, RNA, proteins, lipids, and sugars, as well as surface molecules that are able to pinpoint the cellular source. By the above criteria, exosomes may be stratified according to the presence of tissue and disease-specific signatures and, due to their stability in such biofluids as plasma and serum, they represent an indispensable source of vital clinical insights from liquid biopsies, even at the earliest stages of cancer. Therefore, our work aimed to isolate and characterize LCa patients' derived exosomes from serum by Flow Cytometry in order to define a specific epitope signature exploitable for early diagnosis. METHODS: Circulating exosomes were collected from serum collected from 30 LCa patients and 20 healthy volunteers by the use of antibody affinity method exploiting CD63 specific surface marker. Membrane epitopes were then characterized by Flow cytometry multiplex analysis and compared between LCa Patients and Healthy donors. Clinical data were also matched to obtain statistical correlation. RESULTS: A distinct overexpression of CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 was identified in LCa patients compared to healthy controls, correlating positively with tumor presence. Conversely, CD24, CD31, and CD40, though not overexpressed in tumor samples, showed a significant correlation with nodal involvement in LCa patients (p < 0.01). CONCLUSION: This approach could allow us to set up a cost-effective and less invasive liquid biopsy protocol from a simple blood collection in order to early diagnose LCa and improve patients' outcomes and quality of life.


Assuntos
Detecção Precoce de Câncer , Exossomos , Neoplasias Laríngeas , Humanos , Exossomos/metabolismo , Detecção Precoce de Câncer/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/patologia , Idoso , Estudos de Casos e Controles , Citometria de Fluxo , Epitopos/imunologia , Epitopos/sangue , Biomarcadores Tumorais/sangue , Adulto
3.
J Transl Med ; 22(1): 521, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816839

RESUMO

BACKGROUND: Primary malignant brain tumours are more than one-third of all brain tumours and despite the molecular investigation to identify cancer driver mutations, the current therapeutic options available are challenging due to high intratumour heterogeneity. In addition, an immunosuppressive and inflammatory tumour microenvironment strengthens cancer progression. Therefore, we defined an immune and inflammatory profiling of meningioma and glial tumours to elucidate the role of the immune infiltration in these cancer types. METHODS: Using tissue microarrays of 158 brain tumour samples, we assessed CD3, CD4, CD8, CD20, CD138, Granzyme B (GzmB), 5-Lipoxygenase (5-LOX), Programmed Death-Ligand 1 (PD-L1), O-6-Methylguanine-DNA Methyltransferase (MGMT) and Transglutaminase 2 (TG2) expression by immunohistochemistry (IHC). IHC results were correlated using a Spearman correlation matrix. Transcript expression, correlation, and overall survival (OS) analyses were evaluated using public datasets available on GEPIA2 in Glioblastoma (GBM) and Lower Grade Glioma (LGG) cohorts. RESULTS: Seven out of ten markers showed a significantly different IHC expression in at least one of the evaluated cohorts whereas CD3, CD4 and 5-LOX were differentially expressed between GBMs and astrocytomas. Correlation matrix analysis revealed that 5-LOX and GzmB expression were associated in both meningiomas and GBMs, whereas 5-LOX expression was significantly and positively correlated to TG2 in both meningioma and astrocytoma cohorts. These findings were confirmed with the correlation analysis of TCGA-GBM and LGG datasets. Profiling of mRNA levels indicated a significant increase in CD3 (CD3D, CD3E), and CD138 (SDC1) expression in GBM compared to control tissues. CD4 and 5-LOX (ALOX5) mRNA levels were significantly more expressed in tumour samples than in normal tissues in both GBM and LGG. In GBM cohort, GzmB (GZMB), SDC1 and MGMT gene expression predicted a poor overall survival (OS). Moreover, in LGG cohort, an increased expression of CD3 (CD3D, CD3E, CD3G), CD8 (CD8A), GZMB, CD20 (MS4A1), SDC1, PD-L1, ALOX5, and TG2 (TGM2) genes was associated with worse OS. CONCLUSIONS: Our data have revealed that there is a positive and significant correlation between the expression of 5-LOX and GzmB, both at RNA and protein level. Further evaluation is needed to understand the interplay of 5-LOX and immune infiltration in glioma progression.


Assuntos
Neoplasias Encefálicas , Inflamação , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Masculino , Inflamação/patologia , Inflamação/imunologia , Inflamação/genética , Feminino , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , Adulto , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Imuno-Histoquímica , Estudos de Coortes , Análise de Sobrevida
4.
J Transl Med ; 22(1): 647, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987822

RESUMO

BACKGROUND: The growing understanding of cancer biology and the establishment of new treatment modalities has not yielded the expected results in terms of survival for Laryngeal Squamous Cell Cancer (LSCC). Early diagnosis, as well as prompt identification of patients with high risk of relapse would ensure greater chance of therapeutic success. However, this goal remains a challenge due to the absence of specific biomarkers for this neoplasm. METHODS: Serum samples from 45 LSCC patients and 23 healthy donors were collected for miRNA expression profiling by TaqMan Array analysis. Additional 20 patients and 42 healthy volunteers were included for the validation set, reaching an equal number of clinical samples for each group. The potential diagnostic ability of the such identified three-miRNA signature was confirmed by ROC analysis. Moreover, each miRNA was analyzed for the possible correlation with HNSCC patients' survival and TNM status by online databases Kaplan-Meier (KM) plotter and OncomiR. In silico analysis of common candidate targets and their network relevance to predict shared biological functions was finally performed by PANTHER and GeneMANIA software. RESULTS: We characterized serum miRNA profile of LSCC patients identifying a novel molecular signature, including miR-223, miR-93 and miR-532, as circulating marker endowed with high selectivity and specificity. The oncogenic effect and the prognostic significance of each miRNA was investigated by bioinformatic analysis, denoting significant correlation with OS. To analyse the molecular basis underlying the pro-tumorigenic role of the signature, we focused on the simultaneously regulated gene targets-IL6ST, GTDC1, MAP1B, CPEB3, PRKACB, NFIB, PURB, ATP2B1, ZNF148, PSD3, TBC1D15, PURA, KLF12-found by prediction tools and deepened for their functional role by pathway enrichment analysis. The results showed the involvement of 7 different biological processes, among which inflammation, proliferation, migration, apoptosis and angiogenesis. CONCLUSIONS: In conclusion, we have identified a possible miRNA signature for early LSCC diagnosis and we assumed that miR-93, miR-223 and miR-532 could orchestrate the regulation of multiple cancer-related processes. These findings encourage the possibility to deepen the molecular mechanisms underlying their oncogenic role, for the desirable development of novel therapeutic opportunities based on the use of short single-stranded oligonucleotides acting as non-coding RNA antagonists in cancer.


Assuntos
Carcinoma de Células Escamosas , Biologia Computacional , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica , Neoplasias Laríngeas , MicroRNAs , Humanos , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/diagnóstico , MicroRNAs/sangue , MicroRNAs/genética , Masculino , Feminino , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Curva ROC , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estimativa de Kaplan-Meier , Estudos de Casos e Controles , Redes Reguladoras de Genes , Idoso
5.
Semin Cell Dev Biol ; 98: 139-153, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31154010

RESUMO

Mitochondria are the key energy-producing organelles and cellular source of reactive species. They are responsible for managing cell life and death by a balanced homeostasis passing through a network of structures, regulated principally via fission and fusion. Herein we discuss about the most advanced findings considering mitochondria as dynamic biophysical systems playing compelling roles in the regulation of energy metabolism in both physiologic and pathologic processes controlling cell death and survival. Precisely, we focus on the mitochondrial commitment to the onset, maintenance and counteraction of apoptosis, autophagy and senescence in the bioenergetic reprogramming of cancer cells. In this context, looking for a pharmacological manipulation of cell death processes as a successful route for future targeted therapies, there is major biotechnological challenge in underlining the location, function and molecular mechanism of mitochondrial proteins. Based on the critical role of mitochondrial functions for cellular health, a better knowledge of the main molecular players in mitochondria disfunction could be decisive for the therapeutical control of degenerative diseases, including cancer.


Assuntos
Apoptose , Autofagia , Senescência Celular , Mitocôndrias/metabolismo , Animais , Humanos
6.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563529

RESUMO

Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing of four components immediately before use. The self-assembling approach facilitates technology transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical setting due to the high risk of human errors during the procedure. In this work, it was hypothesized that the SANP preparation protocol could be simplified by using freeze-dried formulations. An in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition, the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the industrial development of SANPs for the delivery of drugs to the brain.


Assuntos
Glioblastoma , Nanopartículas , Animais , Difosfonatos/farmacologia , Liofilização , Glioblastoma/tratamento farmacológico , Camundongos , Sacarose , Trealose , Ácido Zoledrônico
7.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163550

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.


Assuntos
MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Gradação de Tumores , Células-Tronco Neoplásicas/química , Prognóstico , Neoplasias da Próstata/genética
8.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897702

RESUMO

Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)y1 zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening.


Assuntos
Tumor Carcinoide , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Animais , Tumor Carcinoide/tratamento farmacológico , Carcinoma Neuroendócrino/patologia , Xenoenxertos , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Peixe-Zebra
9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614061

RESUMO

Recently, we have demonstrated that miR-423-5p modulates the growth and metastases of prostate cancer (PCa) cells both in vitro and in vivo. Here, we have studied the effects of miR-423-5p on the proteomic profile in order to identify its intracellular targets and the affected pathways. Applying a quantitative proteomic approach, we analyzed the effects on the protein expression profile of miR-423-5p-transduced PCa cells. Moreover, a computational analysis of predicted targets of miR-423-5p was carried out by using several target prediction tools. Proteomic analysis showed that 63 proteins were differentially expressed in miR-423-5-p-transfected LNCaP cells if compared to controls. Pathway enrichment analysis revealed that stable overexpression of miR-423-5p in LNCaP PCa cells induced inhibition of glycolysis and the metabolism of several amino acids and a parallel downregulation of proteins involved in transcription and hypoxia, the immune response through Th17-derived cytokines, inflammation via amphorin signaling, and ion transport. Moreover, upregulated proteins were related to the S phase of cell cycle, chromatin modifications, apoptosis, blood coagulation, and calcium transport. We identified seven proteins commonly represented in miR-423-5p targets and differentially expressed proteins (DEPs) and analyzed their expression and influence on the survival of PCa patients from publicly accessible datasets. Overall, our findings suggest that miR-423-5p induces alterations in glucose and amino acid metabolism in PCa cells paralleled by modulation of several tumor-associated processes.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias da Próstata/metabolismo , Próstata/patologia , Aminoácidos/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
10.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572313

RESUMO

Long noncoding RNAs (lncRNAs) represent key regulators of gene transcription during the inflammatory response. Recent findings showed lncRNAs to be dysregulated in human diseases, such as inflammatory bowel disease, diabetes, allergies, asthma, and cancer. These noncoding RNAs are crucial for immune mechanism, as they are involved in differentiation, cell migration and in the production of inflammatory mediators through regulating protein-protein interactions or their ability to assemble with RNA and DNA. The last interaction can occur in cis or trans and is responsible for all the possible lncRNAs biological effects. Our proposal is to provide an overview on lncRNAs roles and functions related to immunity and immune mediated diseases, since these elucidations could be beneficial to untangle the complex bond between them.


Assuntos
Imunidade Adaptativa/genética , Doenças Autoimunes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , RNA Longo não Codificante/metabolismo , Animais , Doenças Autoimunes/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Modelos Animais , Oligonucleotídeos/metabolismo , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/imunologia , RNA Longo não Codificante/genética , Transcrição Gênica/imunologia
11.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921348

RESUMO

Colorectal cancer (CRC) is the third most deadly cancer worldwide, and inflammatory bowel disease (IBD) is one of the critical factors in CRC carcinogenesis. IBD is responsible for an unphysiological and sustained chronic inflammation environment favoring the transformation. MicroRNAs (miRNAs) belong to a class of highly conserved short single-stranded segments (18-25 nucleotides) non-coding RNA and have been extensively discussed in both CRC and IBD. However, the role of miRNAs in the development of colitis-associated CRC (CAC) is less clear. The aim of this review is to summarize the major upregulated (miR-18a, miR-19a, miR-21, miR-31, miR-155 and miR-214) and downregulated (miR-124, miR-193a-3p and miR-139-5p) miRNAs in CAC, and their roles in genes' expression modulation in chronic colonic-inflammation-induced carcinogenesis, including programmed cell-death pathways. These miRNAs dysregulation could be applied for early CAC diagnosis, to predict therapy efficacy and for precision treatment.


Assuntos
Carcinogênese/genética , Colite/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Colite/complicações , Colite/patologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos
12.
Semin Cell Dev Biol ; 78: 37-50, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28765094

RESUMO

The current knowledge about non-coding RNAs (ncRNAs) as important regulators of gene expression in both physiological and pathological conditions, has been the main engine for the design of innovative platforms to finalize the pharmacological application of ncRNAs as either therapeutic tools or as molecular biomarkers in cancer. Biochemical alterations of cancer cells are, in fact, largely supported by ncRNA disregulation in the tumor site, which, in turn, reflects the cancer-associated specific modification of circulating ncRNA expression pattern. The aim of this review is to describe the state of the art of pre-clinical and clinical studies that analyze the involvement of miRNAs and lncRNAs in cancer-related processes, such as proliferation, invasion and metastases, giving emphasis to their functional role. A central node of our work has been also the examination of advantages and criticisms correlated with the clinical use of ncRNAs, taking into account the pressing need to refine the profiling methods aimed at identify novel diagnostic and prognostic markers and the request to optimize the delivery of such nucleic acids for a therapeutic use in an imminent future.


Assuntos
Transformação Celular Neoplásica/genética , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Neoplasias/diagnóstico , Neoplasias/genética , RNA não Traduzido/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Neoplásica/patologia , Neoplasias/patologia
13.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899898

RESUMO

Extracellular Vesicles (EVs) represent a heterogeneous population of membranous cell-derived structures, including cargo-oriented exosomes and microvesicles. EVs are functionally associated with intercellular communication and play an essential role in multiple physiopathological conditions. Shedding of EVs is frequently increased in malignancies and their content, including proteins and nucleic acids, altered during carcinogenesis and cancer progression. EVs-mediated intercellular communication between tumor cells and between tumor and stromal cells can modulate, through cargo miRNA, the survival, progression, and drug resistance in cancer conditions. These consolidated suggestions and EVs' stability in bodily fluids have led to extensive investigations on the potential employment of circulating EVs-derived miRNAs as tumor biomarkers and potential therapeutic vehicles. In this review, we highlight the current knowledge about circulating EVs-miRNAs in human cancer and the application limits of these tools, discussing their clinical utility and challenges in functions such as in biomarkers and instruments for diagnosis, prognosis, and therapy.


Assuntos
Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Biomarcadores Tumorais/metabolismo , Comunicação Celular/genética , Micropartículas Derivadas de Células/metabolismo , Progressão da Doença , Exossomos/metabolismo , Humanos , MicroRNAs/farmacologia , Neoplasias/patologia , Prognóstico , Microambiente Tumoral/genética
14.
Int J Mol Sci ; 21(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283655

RESUMO

Inflammation is strictly associated with cancer and plays a key role in tumor development and progression. Several epidemiological studies have demonstrated that inflammation can predispose to tumors, therefore targeting inflammation and the molecules involved in the inflammatory process could represent a good strategy for cancer prevention and therapy. In the past, several clinical studies have demonstrated that many anti-inflammatory agents, including non-steroidal anti-inflammatory drugs (NSAIDs), are able to interfere with the tumor microenvironment by reducing cell migration and increasing apoptosis and chemo-sensitivity. This review focuses on the link between inflammation and cancer by describing the anti-inflammatory agents used in cancer therapy, and their mechanisms of action, emphasizing the use of novel anti-inflammatory agents with significant anticancer activity.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores , Quimioprevenção , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/prevenção & controle , Transdução de Sinais
15.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456271

RESUMO

Head and neck squamous cell carcinoma (HNSCC), a heterogeneous disease arising from various anatomical locations including the larynx, is a leading cause of death worldwide. Despite advances in multimodality treatment, the overall survival rate of the disease is still largely dismal. Early and accurate diagnosis of HNSCC is urgently demanded in order to prevent cancer progression and to improve the quality of the patient's life. Recently, microRNAs (miRNAs), a family of small non-coding RNAs, have been widely reported as new robust tools for prediction, diagnosis, prognosis, and therapeutic approaches of human diseases. Abnormally expressed miRNAs are strongly associated with cancer development, resistance to chemo-/radiotherapy, and metastatic potential through targeting a large variety of genes. In this review, we summarize on the recent reports that emphasize the pivotal biological roles of miRNAs in regulating carcinogenesis of HNSCC, particularly laryngeal cancer. In more detail, we report the characterized miRNAs with an evident either oncogenic or tumor suppressive role in the cancers. In addition, we also focus on the correlation between miRNA deregulation and clinical relevance in cancer patients. On the basis of intriguing findings, the study of miRNAs will provide a new great opportunity to access better clinical management of the malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Laríngeas/tratamento farmacológico , MicroRNAs/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Neoplasias Laríngeas/radioterapia , MicroRNAs/genética , Metástase Neoplásica , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário
16.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390836

RESUMO

5-Lipoxygenase (5-LO) has been reported to be highly expressed in brain tumors and to promote glioma cell proliferation. Therefore, we investigated the anticancer activity of the novel 5-LO inhibitor derivative 3-tridecyl-4,5-dimethoxybenzene-1,2-diol hydroquinone (EA-100C red) on glioblastoma (GBM) cell growth. Cell viability was evaluated by MTT assay. The effects of the compound on apoptosis, oxidative stress and autophagy were assessed by flow cytometry (FACS). The mode of action was confirmed by Taqman apoptosis array, Real Time qPCR, confocal microscopy analysis and the western blotting technique. Our results showed that EA-100C Red had a higher anti-proliferative effect on LN229 as compared to U87MG cells. The compound induced a significant increase of apoptosis and autophagy and up-regulated pro-apoptotic genes (Bcl3, BNIP3L, and NFKBIA) in both GBM cell lines. In this light, we studied the effects of EA-100C red on the expression of CHOP and XBP1, that are implicated in ER-stress-mediated cell death. In summary, our findings revealed that EA-100C red induced ER stress-mediated apoptosis associated to autophagy in GBM cells through CHOP and Beclin1 up-regulation and activation of caspases 3, 9, JNK and NF-kappaB pathway. On these bases, EA-100C red could represent a promising compound for anti-cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hidroquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos
17.
Int J Mol Sci ; 20(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336999

RESUMO

Head and neck carcinoma (HNC) is a heterogeneous disease encompassing a variety of tumors according to the origin. Laryngeal cancer (LC) represents one of the most frequent tumors in the head and neck region. Despite clinical studies and advance in treatment, satisfactory curative strategy has not yet been reached. Therefore, there is an urgent need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as suitable therapeutic targets. Long non-coding RNAs (lncRNA) are reported as important regulators of gene expression and represent an innovative pharmacological application as molecular biomarkers in cancer. The purpose of this review is to discuss the most relevant epigenetic and histological prognostic biomarkers in HNC, with particular focus on LC. We summarize the emerging roles of long non-coding RNAs in HNC and LC development and their possible use in early diagnosis.


Assuntos
Biomarcadores Tumorais , Neoplasias de Cabeça e Pescoço/genética , Neoplasias Laríngeas/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/mortalidade , Neoplasias Laríngeas/patologia , Anotação de Sequência Molecular , Prognóstico , Interferência de RNA
18.
Int J Mol Sci ; 20(9)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058823

RESUMO

Silybin is a flavonolignan extracted from Silybum marianum (milk thistle) with hepatoprotective, antioxidant, and anti-inflammatory activity. Several studies have shown that silybin is highly effective to prevent and treat different types of cancer and that its antitumor mechanisms involve the arrest of the cell cycle and/or apoptosis. An MTT assay was performed to study cell viability, lipid peroxidation, extracellular NO production, and scavenger enzyme activity were studied by Thiobarbituric Acid-Reactive Species (TBARS) assay, NO assay, and MnSOD assay, respectively. Cell cycle and apoptosis analysis were performed by FACS. miRNA profiling were evaluated by real time PCR. In this study, we demonstrated that Silybin induced growth inhibition blocking the Hepg2 cells in G1 phase of cell cycle and activating the process of programmed cell death. Moreover, the antiproliferative effects of silybin were paralleled by a strong increase of the number of ceramides involved in the modulation of miRNA secretion. In particular, after treatment with silybin, miR223-3p and miR16-5p were upregulated, while miR-92-3p was downregulated (p < 0.05). In conclusion, our results suggest that silybin-Induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in HepG2 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ceramidas/biossíntese , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Silibina/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Óxido Nítrico/biossíntese
19.
J Cell Physiol ; 233(12): 9345-9353, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29319158

RESUMO

This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters, and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians, and vegans) with similar age, weight and BMI, and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian, and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H2 O2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian, and omnivore sera on the morphological changes induced by H2 O2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage.


Assuntos
Diferenciação Celular , Dieta Vegana , Células Musculares/citologia , Músculos/anatomia & histologia , Adulto , Animais , Antropometria , Contagem de Células , Linhagem Celular , Forma Celular , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Células Musculares/enzimologia , Miócitos Cardíacos/patologia , Tamanho do Órgão , Oxirredução , Estresse Oxidativo , Projetos Piloto , Ratos , Vegetarianos , Adulto Jovem
20.
J Cell Physiol ; 232(7): 1907-1913, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27982429

RESUMO

Sorafenib is an antitumor drug for treatment of advanced hepatocellular carcinoma (HCC). It acts as a multikinase inhibitor suppressing cell proliferation and angiogenesis. Human microRNA-125a-5p (miR-125a) is endowed with similar activities and is frequently downregulated in HCC. Looking for a potential microRNA-based mechanism of action of the drug, we found that sorafenib increases cellular expression of miR-125a in cultured HuH-7 and HepG2 HCC cells. Upregulation of the microRNA inhibited cell proliferation by suppression of sirtuin-7, a NAD(+)-dependent deacetylase, and p21/p27-dependent cell cycle arrest in G1. Later, recruitment of miR-125a in the antiproliferative activity of sorafenib was inquired by modulating its expression in combination with the drug treatment. This analysis showed that intracellular delivery of miR-125a had no additive effect on the antiproliferative activity of sorafenib, whereas a miR-125a inhibitor could counteract it. Finally, evaluation of other oncogenic targets of miR-125a revealed its ability to interfere with the expression of matrix metalloproteinase-11, Zbtb7a proto-oncogene, and c-Raf, possibly contributing to the antiproliferative activity of the drug. J. Cell. Physiol. 232: 1907-1913, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Niacinamida/farmacologia , Proto-Oncogene Mas , Reprodutibilidade dos Testes , Sorafenibe , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA