Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19078-19087, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37956995

RESUMO

Successfully addressing the complex global sanitation problem is a massive undertaking. Anaerobic digestion (AD), coupled with post-treatment, has been identified as a promising technology to contribute to meeting this goal. It offers multiple benefits to the end users, such as the potential inactivation of pathogenic microorganisms in waste and the recovery of resources, including renewable energy and nutrients. This feature article provides an overview of the most frequently applied AD systems for decentralized communities and low- and lower-middle-income countries with an emphasis on sanitation, including technologies for which pathogen inactivation was considered during the design. Challenges to AD use are then identified, such as experience, economics, knowledge/training of personnel and users, and stakeholder analysis. Finally, accelerators for AD implementation are noted, such as the inclusion of field studies in academic journals, analysis of emerging contaminants, the use of sanitation toolboxes and life cycle assessment in design, incorporation of artificial intelligence in monitoring, and expansion of undergraduate and graduate curricula focused on Water, Sanitation, and Hygiene (WASH).


Assuntos
Inteligência Artificial , Saneamento , Anaerobiose , Tecnologia , Água , Abastecimento de Água
2.
Water Sci Technol ; 85(11): 3208-3224, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35704406

RESUMO

The treatment of yellow water (human urine) in a downflow fluidised bed reactor (DFFBR) was investigated to evaluate biological ureolysis and nutrient recovery. The reactor was operated at 30±4 °C in batch mode, and reaction time = 1 d. The average immobilised biomass (as volatile solids, IVS) in the reactor was 2.5±0.9 g L-1support, and specific ureolytic activity was 121 g Urea-N g-1 IVS d-1. The kinetic parameters were 0.152 mol L-1 (Km) and 8 mol g-1 IVS d-1 (Vmax). The ureolysis efficiency was 93.4% and chemical oxygen demand removal efficiency was 31.2%, while total ammonium nitrogen (NH4+-N) production rate was 7 g L-1 d-1 and phosphate removal reached 26%. Precipitates recovery during biological treatment was 1.72±0.8 g. These results suggest that the treatment of yellow water in a DFFBR is a viable option for partial recovery of N and P.


Assuntos
Reatores Biológicos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Humanos , Nitrogênio , Nutrientes , Eliminação de Resíduos Líquidos/métodos , Água
3.
Water Sci Technol ; 86(1): 66-79, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35838283

RESUMO

This study aimed to assess the effect of carbohydrates on protein hydrolysis and potential implications for the design of anaerobic reactors for treatment of protein-rich wastewaters. Batch experiments were carried out with dissolved starch (Sta) and gelatine (Gel) at different chemical oxygen demand (COD) ratios ranging from 0 to 5.5 under methanogenic conditions for methane production and up to 3.8 under non-methanogenic conditions for volatile fatty acids (VFA), both at 35 °C. The Sta/Gel did not have a direct effect on the gelatine hydrolysis rate constants under methanogenic (0.51 ± 0.05 L g VSS-1 day-1) and non-methanogenic conditions (0.48 ± 0.05 L g VSS-1 day-1). However, under non-methanogenic conditions, gelatine hydrolysis was inhibited by 64% when a spectrum of VFA was added at a VFA/Gel (COD) ratio of 5.9. This was not caused by the ionic strength exerted by VFA but by the VFA itself. These results imply that methanogenesis dictates the reactor design for methane production but hydrolysis does for VFA production from wastewater proteins.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Carboidratos , Ácidos Graxos Voláteis/metabolismo , Hidrólise , Metano/metabolismo , Águas Residuárias
4.
Environ Sci Technol ; 53(3): 1334-1343, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620555

RESUMO

Recovery of calcium phosphate granules (CaP granules) from high-strength wastewater is an opportunity to reduce the natural phosphorus (P) scarcity, geographic imbalances of P reserves, and eutrophication. Formation of CaP granules was previously observed in an upflow anaerobic sludge bed (UASB) reactor treating source separated black water and is enhanced by Ca2+ addition. However, the required operating conditions and influent composition for CaP granulation are still unknown. In this study, we have experimentally demonstrated that the carbon source and bulk pH are crucial parameters for the formation and growth of CaP granules in a UASB reactor, operating at relatively low upflow velocity (<1 cm h-1). Degradation of glucose yielded sufficient biomass (microbial cells and extracellular biopolymers) to cover crystal and amorphous calcium phosphate [Ca x(PO4) y], forming CaP granules. Influent only containing volatile fatty acids as the carbon source did not generate CaP granules. Moreover, bulk pH between 7.0 and 7.5 was crucial for the enrichment of Ca x(PO4) y in the granules over bulk precipitation. Bulk pH 8 reduced the Ca x(PO4) y enrichment in granules of >1.4 mm diameter from 9 to 5 wt % P. Moreover, for bulk pH 7.5, co-precipitation of CaCO3 with Ca x(PO4) y was reduced.


Assuntos
Carbono , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Fosfatos de Cálcio , Concentração de Íons de Hidrogênio , Esgotos
5.
Environ Res ; 178: 108671, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520821

RESUMO

Adding calcium during anaerobic digestion of vacuum collected black water (BW) in an up-flow anaerobic sludge bed (UASB) reactor increased the retention of total phosphorus (P) in the reactor from 51% to 87%. However, the insufficient mixing in the reactor caused cementation and relatively high content of organics in the recovered calcium phosphate (CaP) granules, limiting the P recovery. In this study, the UASB reactor was mixed with an internal gas-lift (UASB-GL) to prevent cementation and to enhance the P content in CaP granules. The novel UASB-GL reactor operated for 300 days, treating concentrated BW. At steady state, the removal of total COD and P was 92% and 90%, respectively. The gas injection created a sludge bed with an average total suspended solids concentration of 73 ±â€¯16 g/L at the bottom and 31 ±â€¯5 g/L at the top of the reactor. The concentration of solid P at the bottom of the reactor was 4.58 ±â€¯1.34 gP/L, while at the top a much lower concentration was obtained (0.75 ±â€¯0.32 gP/L). 89% of the CaP granules was found at the bottom of the reactor. The harvested CaP granules (>0.4 mm diameter) contained on average 7.8 ±â€¯0.6 wt% of P. A potential recovery of 57% of P in BW as CaP granules was calculated, considering actual application of the UASB-GL reactor in source separated sanitation.


Assuntos
Fosfatos de Cálcio/química , Esgotos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Fosfatos de Cálcio/análise , Água
6.
Water Sci Technol ; 80(8): 1505-1511, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31961813

RESUMO

Decentralized sanitary wastewater treatment has become a viable and sustainable alternative, especially for developing countries and small communities. Besides, effluents may present variations in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total nitrogen values. This study describes the feasibility of using a pilot upflow anaerobic sludge blanket (UASB) reactor to treat wastewater with different organic loads (COD), using black water (BW) and sanitary wastewater, in addition to its potential for preserving nutrients for later recovery and/or reuse. The UASB reactor was operated continuously for 95 weeks, with a hydraulic retention time of 3 days. In Phase 1, the reactor treated simulated BW and achieved 77% CODtotal removal. In Phase 2, treating only sanitary wastewater, the CODtotal removal efficiency was 60%. Phase 3 treated simulated BW again, and CODtotal removal efficiency was somewhat higher than in Phase 1, reaching 81%. In Phase 3, the removal of pathogens was also evaluated: the efficiency was 1.96 log for Escherichia coli and 2.13 log for total coliforms. The UASB reactor was able to withstand large variations in the organic loading rate (0.09-1.49 kg COD m-3 d-1), in continuous operation mode, maintaining a stable organic matter removal.


Assuntos
Esgotos , Purificação da Água , Anaerobiose , Reatores Biológicos , Projetos Piloto , Eliminação de Resíduos Líquidos
7.
Environ Sci Technol ; 52(22): 13144-13154, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30335367

RESUMO

Simultaneous recovery of calcium phosphate granules (CaP granules) and methane in anaerobic treatment of source separated black water (BW) has been previously demonstrated. The exact mechanism behind the accumulation of calcium phosphate (Ca x(PO4) y) in CaP granules during black water treatment was investigated in this study by examination of the interface between the outer anaerobic biofilm and the core of CaP granules. A key factor in this process is the pH profile in CaP granules, which increases from the edge (7.4) to the center (7.9). The pH increase enhances supersaturation for Ca x(PO4) y phases, creating internal conditions preferable for Ca x(PO4) y precipitation. The pH profile can be explained by measured bioconversion of acetate and H2, HCO3- and H+ into CH4 in the outer biofilm and eventual stripping of CO2 and CH4 (biogas) from the granule. Phosphorus content and Ca x(PO4) y crystal mass quantity in the granules positively correlated with the granule size, in the reactor without Ca2+ addition, indicating that the phosphorus rich core matures with the granule growth. Adding Ca2+ increased the overall phosphorus content in granules >0.4 mm diameter, but not in fine particles (<0.4 mm). Additionally, H+ released from aqueous phosphate species during Ca x(PO4) y crystallization were buffered by internal hydrogenotrophic methanogenesis and stripping of biogas from the granule. These insights into the formation and growth of CaP granules are important for process optimization, enabling simultaneous Ca x(PO4) y and CH4 recovery in a single reactor. Moreover, the biological induction of Ca x(PO4) y crystallization resulting from biological increase of pH is relevant for stimulation and control of (bio)crystallization and (bio)mineralization in real environmental conditions.


Assuntos
Reatores Biológicos , Água , Anaerobiose , Cálcio , Fosfatos de Cálcio , Concentração de Íons de Hidrogênio , Fósforo
8.
Water Sci Technol ; 77(11-12): 2589-2597, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29944124

RESUMO

Chemical energy can be recovered from municipal wastewater as biogas through anaerobic treatment. Effluent from direct anaerobic wastewater treatment at low temperatures, however, still contains ammonium and considerable amounts of dissolved methane. After nitritation, methane can be used as electron donor for denitrification by the anaerobic bacterium 'Candidatus Methylomirabilis oxyfera'. It was shown that in the presence of 0.7% O2, denitrifying methanotrophic activity slightly increased and returned to its original level after oxygen had been removed. At 1.1% O2, methane consumption rate increased 118%, nitrite consumption rate increased 58%. After removal of oxygen, methane consumption rate fully recovered, and nitrite consumption rate returned to 88%. Therefore, traces of oxygen that bacteria are likely to be exposed to in wastewater treatment are not expected to negatively affect the denitrifying methanotrophic process. 2.0% O2 inhibited denitrifying activity. Nitrite consumption rate decreased 60% and did not recover after removal of oxygen. No clear effect on methane consumption was observed. Further studies should evaluate if intermittent addition of oxygen results in increased growth rates of the slow-growing 'Candidatus Methylomirabilis oxyfera'.


Assuntos
Bactérias Anaeróbias/metabolismo , Oxigênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias Anaeróbias/crescimento & desenvolvimento , Desnitrificação , Metano/metabolismo , Nitritos/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
9.
Appl Microbiol Biotechnol ; 101(2): 889-901, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900444

RESUMO

Inhibition effect of humic acid (HA) on anaerobic digestion of cellulose and xylan and the mitigation potential of the inhibition were evaluated in controlled fed batch reactors at 30 °C and a hydraulic retention time (HRT) of 20 days. Reactor performances were evaluated by biogas production and metabolite measurements for 220 days. Microbial population dynamics of the reactors were monitored with next-generation 16S rRNA gene sequencing at nine different sampling times. Our results showed that increasing levels of HA inhibited the hydrolysis efficiency of the digestion by 40% and concomitantly reduced the methane yield. Addition of hydrolytic enzymes helped to reverse the negative effects of HA, whereas calcium addition did not reverse HA inhibition. Microbiological analyses showed that the relative abundance of hydrolytic/fermentative bacterial groups such as Clostridiales, Bacteroidales and Anaerolineales was significantly lowered by the presence of HA. HA also affected the archaeal populations. Mostly hydrogenotrophic methanogens were negatively affected by HA. The relative abundance of Methanobacteriaceae, Methanomicrobiales-WCHA208 and Unassigned Thermoplasmata WCHA1-57 were negatively affected by the presence of HA, whereas Methanosaetacea was not affected.


Assuntos
Reatores Biológicos/microbiologia , Biota/efeitos dos fármacos , Celulose/metabolismo , Substâncias Húmicas/toxicidade , Xilanos/metabolismo , Anaerobiose , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hidrólise , Metano/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
10.
Environ Sci Technol ; 49(20): 12450-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26389714

RESUMO

This study demonstrates that microalgae can effectively recover all P and N from anaerobically treated black water (toilet wastewater). Thus, enabling the removal of nutrients from the black water and the generation of a valuable algae product in one step. Screening experiments with green microalgae and cyanobacteria showed that all tested green microalgae species successfully grew on anaerobically treated black water. In a subsequent controlled experiment in flat-panel photobioreactors, Chlorella sorokiniana was able to remove 100% of the phosphorus and nitrogen from the medium. Phosphorus was depleted within 4 days while nitrogen took 12 days to reach depletion. The phosphorus and nitrogen removal rates during the initial linear growth phase were 17 and 122 mg·L(-1)·d(-1), respectively. After this initial phase, the phosphorus was depleted. The nitrogen removal rate continued to decrease in the second phase, resulting in an overall removal rate of 80 mg·L(-1)·d(-1). The biomass concentration at the end of the experiment was 11.5 g·L(-1), with a P content of approximately 1% and a N content of 7.6%. This high algal biomass concentration, together with a relatively short P recovery time, is a promising finding for future post-treatment of black water while gaining valuable algal biomass for further application.


Assuntos
Chlorella , Microalgas , Nitrogênio/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biomassa , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fotobiorreatores , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
11.
J Environ Manage ; 149: 271-81, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463590

RESUMO

Urban water and wastewater systems face uncertain developments including technological progress, climate change and urban development. To ensure the sustainability of these systems under dynamic conditions it has been proposed that technologies and infrastructure should be flexible, adaptive and robust. However, in literature it is often unclear what these technologies and infrastructure are. Furthermore, the terms flexible, adaptive and robust are often used interchangeably, despite important differences. In this paper we will i) define the terminology, ii) provide an overview of the status of flexible infrastructure design alternatives for water and wastewater networks and treatment, and iii) develop guidelines for the selection of flexible design alternatives. Results indicate that, with the exception of Net Present Valuation methods, there is little research available on the design and evaluation of technologies that can enable flexibility. Flexible design alternatives reviewed include robust design, phased design, modular design, modular/component platform design and design for remanufacturing. As developments in the water sector are driven by slow variables (climate change, urban development), rather than market forces, it is suggested that phased design or component platform designs are suitable for responding to change, while robust design is an option when operations face highly dynamic variability.


Assuntos
Engenharia/métodos , Engenharia/normas , Águas Residuárias/química , Purificação da Água/instrumentação , Abastecimento de Água/normas , Desenho de Equipamento , Terminologia como Assunto
12.
Water Sci Technol ; 72(11): 2034-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606098

RESUMO

This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m(-3) d(-1), 0.53 kgCOD m(-3) d(-1) and 0.24 kgCOD m(-3) d(-1) correspondingly at hydraulic loading rates of 1.92 m3 m(-2) d(-1), 2.97 m3 m(-2) d(-1) and 1.32 m3 m(-2) d(-1), respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops.


Assuntos
Fezes/química , Poríferos/química , Purificação da Água/métodos , Anaerobiose , Animais , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Esgotos/química , Purificação da Água/instrumentação
13.
Environ Sci Technol ; 48(3): 1893-901, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24364736

RESUMO

Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor (4-MBC), were analyzed in the effluent of the aerobic gray water treatment system in full operation. The effluent was used for lab-scale experiments with an electrochemical cell operated in batch mode. Three different anodes and five different cathodes have been tested. Among the anodes, Ru/Ir mixed metal oxide showed the best performance. Ag and Pt cathodes worked slightly better than Ti and mixed metal oxide cathodes. The compounds that contain a phenolic ring (parabens, bisphenol A, and triclosan) were completely transformed on this anode at a specific electric charge Q = 0.03 Ah/L. The compounds, which contain a benzene ring and multiple side methyl methyl groups (galaxolide, 4-MBC) required high energy input (Q ≤ 0.6 Ah/L) for transformation. Concentrations of adsorbable organohalogens (AOX) in the gray water effluent increased significantly upon treatment for all electrode combinations tested. Oxidation of gray water on mixed metal oxide anodes could not be recommended as a post-treatment step for gray water treatment according to the results of this study. Possible solutions to overcome disadvantages revealed within this study are proposed.


Assuntos
Benzopiranos/química , Cânfora/análogos & derivados , Técnicas Eletroquímicas , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Compostos Benzidrílicos/química , Cânfora/química , Eletrodos , Produtos Domésticos , Oxirredução , Óxidos , Parabenos/química , Fenóis/química , Titânio/química , Triclosan/química , Águas Residuárias/química , Água
14.
Water Sci Technol ; 70(10): 1683-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25429458

RESUMO

The activity of denitrifying methanotrophic bacteria at 11-30 °C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 °C had an optimum temperature of 20-25 °C and that activity dropped as temperature was increased to 30 °C. Biomass enriched at 30 °C had an optimum temperature of 25-30 °C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at ≤20 °C still needs to be studied.


Assuntos
Bactérias/metabolismo , Temperatura Baixa , Desnitrificação , Biomassa , Eliminação de Resíduos Líquidos
15.
Water Sci Technol ; 66(12): 2597-603, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109575

RESUMO

The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH4-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.


Assuntos
Reatores Biológicos , Características da Família , Reologia , Esgotos/química , Temperatura , Purificação da Água/instrumentação , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Coloides , Metano/metabolismo , Projetos Piloto , Volatilização , Eliminação de Resíduos Líquidos
16.
Appl Microbiol Biotechnol ; 92(4): 845-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21667086

RESUMO

Recently discovered microorganisms affiliated to the bacterial phylum NC10, named "Candidatus Methylomirabilis oxyfera", perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO(2)(-) per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature.


Assuntos
Metano/metabolismo , Methylococcaceae/isolamento & purificação , Nitritos/metabolismo , Esgotos/microbiologia , Anaerobiose , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Methylococcaceae/genética , Methylococcaceae/metabolismo , Dados de Sequência Molecular , Países Baixos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
Biodegradation ; 22(1): 163-74, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20658309

RESUMO

Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k20, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.


Assuntos
Bactérias/metabolismo , Esgotos/análise , Purificação da Água , Aerobiose , Anaerobiose , Biodegradação Ambiental , Oxigênio/metabolismo , Esgotos/microbiologia , Temperatura
18.
Water Sci Technol ; 64(10): 1987-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22105119

RESUMO

A major fraction of nutrients emitted from households are originally present in only 1% of total wastewater volume. New sanitation concepts enable the recovery and reuse of these nutrients from feces and urine. Two possible sanitation concepts are presented, with varying degree of source separation leading to various recovery products. Separate vacuum collection and transport followed by anaerobic treatment of concentrated black water (BW) demonstrated on a scale of 32 houses preserve 7.6 g/N/p/d and 0.63 gP/p/d amounting to respectively 69 and 48% of the theoretically produced N and P in the household, and 95% of the retained P was shown to be recoverable via struvite precipitation. Reuse of the anaerobic sludge in agriculture can substantially increase the P recovery. Energy recovery in the form of biogas from anaerobic digestion of concentrated BW, fits well in new concepts of sustainable, zero energy buildings. Nutrient recovery from separately collected urine lowers the percentage of nutrient recovery in comparison with BW but can, on the other hand, often be implemented in existing sanitation concepts. Theoretically 11gN/p/d and 1.0 g P/p/d are produced with urine, of which 38-63 and 34-61% were recovered in practice on a scale of 8-160 inhabitants in Sweden. New sanitation concepts with resource recovery and reuse are being demonstrated worldwide and more and more experience is being gained.


Assuntos
Conservação dos Recursos Naturais/métodos , Esgotos/análise , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Fezes/química , Fertilizantes/análise , Países Baixos , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Potássio/isolamento & purificação , Esgotos/química , Esgotos/microbiologia , Urina/química
19.
Water Sci Technol ; 63(9): 2039-45, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21902047

RESUMO

A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste (water) produced from the following systems: vacuum toilet for black water (VBW), vacuum toilet for faeces with urine separation (VF), dry toilet (DT), dry toilets for faeces with urine separation (DF), separated faecal matter from conventional black water by filter bag (FB). For evaluation of the AC system treating the proposed waste (water) sources at 20 and 35 degrees C, two options were studied: (1) The filling period of the AC system was constant for all waste (water) sources (either 1, 3 or 6 months) and for each period, the seed sludge volume was varied; (2) The volume of the AC system was constant for all proposed waste (water) sources. The results showed that the filling period of the AC system was the main parameter affecting the system performance, followed by operational temperature, while the increase of the seed sludge volume slightly enhanced the performance of the system. The model results indicated that the filling period of the AC system should be higher than 150 days for obtaining a stable performance. It was found that the hydrolysis of biodegradable particulate chemical oxygen demand (COD) is the rate limiting step, as volatile fatty acid concentration is very low in all experimental conditions (< 200 mgCOD/L at 20 degrees C and < 100 mgCOD/L at 35 degrees C). Based on the results of the two options, it was found that the concentrated waste (water) sources have better performance than the diluted waste (water) sources, like VBW waste (water). Furthermore, smaller volume will be required for the AC system.


Assuntos
Fezes , Modelos Teóricos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Humanos , Fatores de Tempo , Poluentes da Água , Purificação da Água/métodos
20.
Bioresour Technol ; 340: 125705, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391186

RESUMO

Thermophilic and hyper-thermophilic anaerobic digestion (AD) are promising techniques for the treatment of concentrated black water (toilet fraction of domestic wastewater collected by low flush volume toilets; BW), recovery of nutrients and simultaneous pathogen removal for safe recovery and reuse of those nutrients. This study showed that thermophilic AD (55 °C) of concentrated BW reaches the same methanisation and COD removal as mesophilic anaerobic treatment of BW (conventional vacuum toilets) and kitchen waste while applying a higher loading rate (OLR) (2.5-4.0 kgCOD/m3/day). With a retention time of 8.7 days, and an OLR of >3 kgCOD/m3/day, COD removal of 70% and a methanisation of 62% (based on CODt) was achieved during thermophilic AD. Hyper-thermophilic (70 °C) reached lower levels of methanisation (38%). Start-up time of thermophilic AD was 12 days. And during thermophilic AD, a shift from acetoclastic methanogenesis towards syntrophic acetate oxidation was observed.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Anaerobiose , Metano , Esgotos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA