Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931020

RESUMO

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Assuntos
Bacteriófagos , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Klebsiella pneumoniae , Camundongos
2.
Cell ; 166(1): 115-25, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27345370

RESUMO

Can a heterotrophic organism be evolved to synthesize biomass from CO2 directly? So far, non-native carbon fixation in which biomass precursors are synthesized solely from CO2 has remained an elusive grand challenge. Here, we demonstrate how a combination of rational metabolic rewiring, recombinant expression, and laboratory evolution has led to the biosynthesis of sugars and other major biomass constituents by a fully functional Calvin-Benson-Bassham (CBB) cycle in E. coli. In the evolved bacteria, carbon fixation is performed via a non-native CBB cycle, while reducing power and energy are obtained by oxidizing a supplied organic compound (e.g., pyruvate). Genome sequencing reveals that mutations in flux branchpoints, connecting the non-native CBB cycle to biosynthetic pathways, are essential for this phenotype. The successful evolution of a non-native carbon fixation pathway, though not yet resulting in net carbon gain, strikingly demonstrates the capacity for rapid trophic-mode evolution of metabolism applicable to biotechnology. PAPERCLIP.


Assuntos
Dióxido de Carbono/metabolismo , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconeogênese , Redes e Vias Metabólicas , Processos Autotróficos , Carboidratos/biossíntese , Escherichia coli/crescimento & desenvolvimento , Espectrometria de Massas
3.
Biochemistry ; 55(17): 2423-6, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27093333

RESUMO

Pyruvate formate-lyase (PFL) is a ubiquitous enzyme that supports increased ATP yield during sugar fermentation. While the PFL reaction is known to be reversible in vitro, the ability of PFL to support microbial growth by condensing acetyl-CoA and formate in vivo has never been directly tested. Here, we employ Escherichia coli mutant strains that cannot assimilate acetate via the glyoxylate shunt and use carbon labeling experiments to unequivocally demonstrate PFL-dependent co-assimilation of acetate and formate. Moreover, PFL-dependent growth is faster than growth on acetate using the glyoxylate shunt. Hence, growth via the reverse activity of PFL could have substantial ecological and biotechnological significance.


Assuntos
Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Formiatos/metabolismo , Acetiltransferases/genética , Anaerobiose , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética
4.
Nucleic Acids Res ; 41(9): e98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470993

RESUMO

Protein levels are a dominant factor shaping natural and synthetic biological systems. Although proper functioning of metabolic pathways relies on precise control of enzyme levels, the experimental ability to balance the levels of many genes in parallel is a major outstanding challenge. Here, we introduce a rapid and modular method to span the expression space of several proteins in parallel. By combinatorially pairing genes with a compact set of ribosome-binding sites, we modulate protein abundance by several orders of magnitude. We demonstrate our strategy by using a synthetic operon containing fluorescent proteins to span a 3D color space. Using the same approach, we modulate a recombinant carotenoid biosynthesis pathway in Escherichia coli to reveal a diversity of phenotypes, each characterized by a distinct carotenoid accumulation profile. In a single combinatorial assembly, we achieve a yield of the industrially valuable compound astaxanthin 4-fold higher than previously reported. The methodology presented here provides an efficient tool for exploring a high-dimensional expression space to locate desirable phenotypes.


Assuntos
Regulação da Expressão Gênica , Engenharia Metabólica/métodos , Biossíntese de Proteínas , Ribossomos/metabolismo , Sítios de Ligação , Carotenoides/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Redes e Vias Metabólicas/genética , Óperon , Proteínas/genética
5.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918942

RESUMO

Bacteriophages ("phages") infect and multiply within specific bacterial strains, causing lysis of their target. Due to the specific nature of these interactions, phages allow a high-precision approach for therapy which can also be exploited for the detection of phage-sensitive pathogens associated with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays becoming standard-of-care diagnostic tools, they will advance the more widespread application of phage therapy in a precision approach. Using a conventional method and a new cloning approach to develop luminescent phages, we engineered two phages that specifically detect a disease-associated microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and tested the stability of spiked fecal samples stored under different conditions. Different reporter gene structures and genome insertion sites were required to successfully develop the two nluc-reporter phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal samples stored under different conditions for up to 30 days did not display major losses in reporter-phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool to guide the growing field of phage therapy, particularly for a precision-based approach to chronic diseases treatment.

6.
PLoS One ; 10(3): e0122957, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25823014

RESUMO

Apart from addressing humanity's growing demand for fuels, pharmaceuticals, plastics and other value added chemicals, metabolic engineering of microbes can serve as a powerful tool to address questions concerning the characteristics of cellular metabolism. Along these lines, we developed an in vivo metabolic strategy that conclusively identifies the product specificity of glycerate kinase. By deleting E. coli's phosphoglycerate mutases, we divide its central metabolism into an 'upper' and 'lower' metabolism, each requiring its own carbon source for the bacterium to grow. Glycerate can serve to replace the upper or lower carbon source depending on the product of glycerate kinase. Using this strategy we show that while glycerate kinase from Arabidopsis thaliana produces 3-phosphoglycerate, both E. coli's enzymes generate 2-phosphoglycerate. This strategy represents a general approach to decipher enzyme specificity under physiological conditions.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Glicéricos/metabolismo , Engenharia Metabólica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Arabidopsis/enzimologia , Escherichia coli/enzimologia , Deleção de Genes , Fosfoglicerato Mutase/deficiência , Fosfoglicerato Mutase/genética , Especificidade por Substrato
7.
ACS Synth Biol ; 2(6): 327-36, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23654261

RESUMO

Translational coupling is the interdependence of translation efficiency of neighboring genes encoded within an operon. The degree of coupling may be quantified by measuring how the translation rate of a gene is modulated by the translation rate of its upstream gene. Translational coupling was observed in prokaryotic operons several decades ago, but the quantitative range of modulation translational coupling leads to and the factors governing this modulation were only partially characterized. In this study, we systematically quantify and characterize translational coupling in E. coli synthetic operons using a library of plasmids carrying fluorescent reporter genes that are controlled by a set of different ribosome binding site (RBS) sequences. The downstream gene expression level is found to be enhanced by the upstream gene expression via translational coupling with the enhancement level varying from almost no coupling to over 10-fold depending on the upstream gene's sequence. Additionally, we find that the level of translational coupling in our system is similar between the second and third locations in the operon. The coupling depends on the distance between the stop codon of the upstream gene and the start codon of the downstream gene. This study is the first to systematically and quantitatively characterize translational coupling in a synthetic E. coli operon. Our analysis will be useful in accurate manipulation of gene expression in synthetic biology and serves as a step toward understanding the mechanisms involved in translational expression modulation.


Assuntos
Escherichia coli/metabolismo , Óperon/genética , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Ribossomos/química
8.
FEBS Lett ; 584(1): 67-73, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19941857

RESUMO

The non-canonical splicing of XBP-1 mRNA is a hallmark of the mammalian unfolded protein response (UPR). The proteasomal degradation of unspliced XBP-1 (XBP-1u) facilitates the termination of the UPR. Thus, understanding the mechanism of XBP-1u degradation may allow control over UPR duration and intensity. We show that XBP-1u interacts with purified 20S proteasomes through its unstructured C-terminus, which leads to its degradation in a manner that autonomously opens the proteasome gate. In living cells, the C-terminus of XBP-1u accumulates in aggresome structures in the presence of proteasome inhibitors. We propose that direct proteasomal degradation of XBP-1u prevents its intracellular aggregation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Inibidores de Proteassoma , Splicing de RNA , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA