Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 40(4): 542-53, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24703780

RESUMO

Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.


Assuntos
Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Hipersensibilidade/imunologia , Proteínas de Membrana/metabolismo , Selectina-P/metabolismo , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Receptor Celular 1 do Vírus da Hepatite A , Ligantes , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia
2.
Nat Immunol ; 11(4): 328-34, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20208538

RESUMO

Pentraxins are a superfamily of conserved proteins involved in the acute-phase response and innate immunity. Pentraxin 3 (PTX3), a prototypical member of the long pentraxin subfamily, is a key component of the humoral arm of innate immunity that is essential for resistance to certain pathogens. A regulatory role for pentraxins in inflammation has long been recognized, but the underlying mechanisms remain unclear. Here we report that PTX3 bound P-selectin and attenuated neutrophil recruitment at sites of inflammation. PTX3 released from activated leukocytes functioned locally to dampen neutrophil recruitment and regulate inflammation. Antibodies have glycosylation-dependent regulatory effect on inflammation. Therefore, PTX3, which is an essential component of humoral innate immunity, and immunoglobulins share functional outputs, including complement activation, opsonization and, as shown here, glycosylation-dependent regulation of inflammation.


Assuntos
Proteína C-Reativa/imunologia , Inflamação/imunologia , Migração e Rolagem de Leucócitos/imunologia , Infiltração de Neutrófilos/imunologia , Componente Amiloide P Sérico/imunologia , Lesão Pulmonar Aguda/imunologia , Animais , Células CHO , Separação Celular , Cricetinae , Cricetulus , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Humanos , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/imunologia
3.
Neurobiol Dis ; 107: 41-56, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27425887

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by the pathological accumulation of amyloid beta (Aß) peptides and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD pathology is also characterized by chronic brain inflammation, which promotes disease pathogenesis. In this context, the blood-brain barrier (BBB), a highly specialized endothelial cell membrane that lines cerebral microvessels, represents the interface between neural cells and circulating cells of the immune system. The BBB thus plays a key role in the generation and maintenance of chronic inflammation during AD. The BBB operates within the neurovascular unit (NVU), which includes clusters of glial cells, neurons and pericytes. The NVU becomes dysfunctional during AD, and each of its components may undergo functional changes that contribute to neuronal injury and cognitive deficit. In transgenic animals with AD-like pathology, recent studies have shown that circulating leukocytes migrate through the activated brain endothelium when certain adhesion molecules are expressed, penetrating into the brain parenchyma, interacting with the NVU components and potentially affecting their structural integrity and functionality. Therefore, migrating immune system cells in cerebral vessels act in concert with the modified BBB and may be integrated into the dysfunctional NVU. Notably, blocking the adhesion mechanisms controlling leukocyte-endothelial interactions inhibits both Aß deposition and tau hyperphosphorylation, and reduces memory loss in AD models. The characterization of molecular mechanisms controlling vascular inflammation and leukocyte trafficking could therefore help to determine the basis of BBB dysfunction during AD and may lead to the development of new therapeutic approaches.


Assuntos
Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Animais , Humanos
4.
J Immunol ; 191(11): 5489-500, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24174617

RESUMO

Regulatory T cells (Tregs) maintain tolerance toward self-antigens and suppress autoimmune diseases, although the underlying molecular mechanisms are unclear. In this study, we show that mice deficient for P-selectin glycoprotein ligand-1 (PSGL-1) develop a more severe form of experimental autoimmune encephalomyelitis than wild type animals do, suggesting that PSGL-1 has a role in the negative regulation of autoimmunity. We found that Tregs lacking PSGL-1 were unable to suppress experimental autoimmune encephalomyelitis and failed to inhibit T cell proliferation in vivo in the lymph nodes. Using two-photon laser-scanning microscopy in the lymph node, we found that PSGL-1 expression on Tregs had no role in the suppression of early T cell priming after immunization with Ag. Instead, PSGL-1-deficient Tregs lost the ability to modulate T cell movement and failed to inhibit the T cell-dendritic cell contacts and T cell clustering essential for sustained T cell activation during the late phase of the immune response. Notably, PSGL-1 expression on myelin-specific effector T cells had no role in T cell locomotion in the lymph node. Our data show that PSGL-1 represents a previously unknown, phase-specific mechanism for Treg-mediated suppression of the persistence of immune responses and autoimmunity induction.


Assuntos
Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteínas de Membrana/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Comunicação Celular/genética , Processos de Crescimento Celular/genética , Movimento Celular/genética , Células Cultivadas , Progressão da Doença , Feminino , Humanos , Linfonodos/patologia , Ativação Linfocitária/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/imunologia
5.
Immunol Cell Biol ; 91(4): 271-80, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337699

RESUMO

The migration of leukocytes from the bloodstream into the central nervous system (CNS) is a key event in the pathogenesis of inflammatory neurological diseases and typically involves the movement of cells through the endothelium of post-capillary venules, which contains intercellular tight junctions. Leukocyte trafficking has predominantly been studied in animal models of multiple sclerosis, stroke and infection. However, recent evidence suggests that immune cells and inflammation mechanisms play an unexpected role in other neurological diseases, such as epilepsy and Parkinson's disease. Imaging leukocyte trafficking in the CNS can be achieved by epifluorescence intravital microscopy (IVM) and multiphoton microscopy. Epifluorescence IVM is ideal for the investigation of leukocyte-endothelial interactions, particularly tethering and rolling, signal transduction pathways controlling integrin activation, slow rolling, arrest and adhesion strengthening in CNS vessels. Multiphoton microscopy is more suitable for the investigation of intraluminal crawling, transmigration and motility inside CNS parenchyma. The mechanisms of leukocyte trafficking in the CNS are not well understood but the use of in vivo imaging techniques to unravel the underlying regulatory pathways will provide insight into the mechanisms of brain damage and may contribute to the development of novel therapeutic strategies. In this review, we discuss recent work in this field, highlighting the development and use of in vivo imaging to investigate leukocyte recruitment in the CNS.


Assuntos
Movimento Celular/imunologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Imageamento Tridimensional/métodos , Leucócitos/citologia , Animais , Comunicação Celular/imunologia , Humanos , Microscopia de Fluorescência
6.
Front Immunol ; 14: 1233870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575227

RESUMO

CD8+ lymphocytes are adaptive immunity cells with the particular function to directly kill the target cell following antigen recognition in the context of MHC class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and a plethora of other cytokines and chemoattractants modulating immune and inflammatory responses. A role for CD8+ T cells has been suggested in aging and several diseases of the central nervous system (CNS), including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we discuss the phenotypic and functional alterations of CD8+ T cell compartment during these conditions, highlighting similarities and differences between CNS disorders. Particularly, we describe the pathological changes in CD8+ T cell memory phenotypes emphasizing the role of senescence and exhaustion in promoting neuroinflammation and neurodegeneration. We also discuss the relevance of trafficking molecules such as selectins, mucins and integrins controlling the extravasation of CD8+ T cells into the CNS and promoting disease development. Finally, we discuss how CD8+ T cells may induce CNS tissue damage leading to neurodegeneration and suggest that targeting detrimental CD8+ T cells functions may have therapeutic effect in CNS disorders.


Assuntos
Esclerose Lateral Amiotrófica , Linfócitos T CD8-Positivos , Humanos , Citocinas , Sistema Nervoso Central
7.
Front Immunol ; 14: 1071553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143680

RESUMO

Th1 and Th17 cell migration into the central nervous system (CNS) is a fundamental process in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). Particularly, leptomeningeal vessels of the subarachnoid space (SAS) constitute a central route for T cell entry into the CNS during EAE. Once migrated into the SAS, T cells show an active motility behavior, which is a prerequisite for cell-cell communication, in situ reactivation and neuroinflammation. However, the molecular mechanisms selectively controlling Th1 and Th17 cell trafficking in the inflamed leptomeninges are not well understood. By using epifluorescence intravital microscopy, we obtained results showing that myelin-specific Th1 and Th17 cells have different intravascular adhesion capacity depending on the disease phase, with Th17 cells being more adhesive at disease peak. Inhibition of αLß2 integrin selectively blocked Th1 cell adhesion, but had no effect on Th17 rolling and arrest capacity during all disease phases, suggesting that distinct adhesion mechanisms control the migration of key T cell populations involved in EAE induction. Blockade of α4 integrins affected myelin-specific Th1 cell rolling and arrest, but only selectively altered intravascular arrest of Th17 cells. Notably, selective α4ß7 integrin blockade inhibited Th17 cell arrest without interfering with intravascular Th1 cell adhesion, suggesting that α4ß7 integrin is predominantly involved in Th17 cell migration into the inflamed leptomeninges in EAE mice. Two-photon microscopy experiments showed that blockade of α4 integrin chain or α4ß7 integrin selectively inhibited the locomotion of extravasated antigen-specific Th17 cells in the SAS, but had no effect on Th1 cell intratissue dynamics, further pointing to α4ß7 integrin as key molecule in Th17 cell trafficking during EAE development. Finally, therapeutic inhibition of α4ß7 integrin at disease onset by intrathecal injection of a blocking antibody attenuated clinical severity and reduced neuroinflammation, further demonstrating a crucial role for α4ß7 integrin in driving Th17 cell-mediated disease pathogenesis. Altogether, our data suggest that a better knowledge of the molecular mechanisms controlling myelin-specific Th1 and Th17 cell trafficking during EAE delevopment may help to identify new therapeutic strategies for CNS inflammatory and demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Células Th17 , Doenças Neuroinflamatórias , Medula Espinal/patologia , Integrinas/metabolismo , Integrina alfa4
8.
Brain Behav Immun Health ; 28: 100568, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36704658

RESUMO

Background: Studies in rodents and humans have indicated that inflammation outside CNS (systemic inflammation) affects brain homeostasis contributing to neurodevelopmental disorders. Itis becoming increasingly evident that such early insults may also belinked to neurodegenerative diseases like late-onset Alzheimer's disease (AD). Importantly, lifestyle and stress, such as viral or bacterial infection causing chronic inflammation, may contribute to neurodegenerative dementia. Systemic inflammatory response triggers a cascade of neuroinflammatory responses, altering brain transcriptome, cell death characteristic of AD, and vascular dementia. Our study aimed to assess the temporal evolution of the pathological impact of systemic inflammation evoked by prenatal and early postnatal peripheral exposure of viral mimetic Polyinosinic:polycytidylic acid (PolyI:C) and compare the hippocampal transcriptomic changes with the profiles of human post-mortem AD and vascular dementia brain specimens. Methods: We have engineered the PolyI:C sterile infection model in wildtype C57BL6 mice to achieve chronic low-grade systemic inflammation. We have conducted a cross-sectional analysis of aging PolyI:C and Saline control mice (3 months, 6 months, 9 months, and 16 months), taking the hippocampus as a reference brain region, and compared the brain aging phenotype to AD progression in humans with mild AD, severe AD, and Controls (CTL), in parallel to Vascular dementia (VaD) patients' specimens. Results: We found that PolyI:C mice display both peripheral and central inflammation with a peak at 6 months, associated with memory deficits. The hippocampus is characterized by a pronounced and progressive tauopathy. In PolyI:C brains, microglia undergo aging-dependent morphological shifts progressively adopting a phagocytic phenotype. Transcriptomic analysis reveals a profound change in gene expression throughout aging, with a peak in differential expression at 9 months. We show that the proinflammatory marker Lcn2 is one of the genes with the strongest upregulation in PolyI:C mice upon aging. Validation in brains from patients with increasing severity of AD and VaD shows the reproducibility of some gene targets in vascular dementia specimens as compared to AD ones. Conclusions: The PolyI:C model of sterile infection demonstrates that peripheral chronic inflammation causes progressive tau hyperphosphorylation, changes in microglia morphology, astrogliosis and gene reprogramming reflecting increased neuroinflammation, vascular remodeling, and the loss of neuronal functionality seen to some extent in human AD and Vascular dementia suggesting early immune insults could be crucial in neurodegenerative diseases.

9.
Cell Rep ; 42(5): 112516, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37204926

RESUMO

Response to multiple microenvironmental cues and resilience to mechanical stress are essential features of trafficking leukocytes. Here, we describe unexpected role of titin (TTN), the largest protein encoded by the human genome, in the regulation of mechanisms of lymphocyte trafficking. Human T and B lymphocytes express five TTN isoforms, exhibiting cell-specific expression, distinct localization to plasma membrane microdomains, and different distribution to cytosolic versus nuclear compartments. In T lymphocytes, the LTTN1 isoform governs the morphogenesis of plasma membrane microvilli independently of ERM protein phosphorylation status, thus allowing selectin-mediated capturing and rolling adhesions. Likewise, LTTN1 controls chemokine-triggered integrin activation. Accordingly, LTTN1 mediates rho and rap small GTPases activation, but not actin polymerization. In contrast, chemotaxis is facilitated by LTTN1 degradation. Finally, LTTN1 controls resilience to passive cell deformation and ensures T lymphocyte survival in the blood stream. LTTN1 is, thus, a critical and versatile housekeeping regulator of T lymphocyte trafficking.


Assuntos
Transdução de Sinais , Linfócitos T , Humanos , Conectina/metabolismo , Adesão Celular/fisiologia , Isoformas de Proteínas/metabolismo , Ativação Linfocitária
10.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958458

RESUMO

The advent of immune checkpoint inhibitors (ICIs), for instance, programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) blockers, has greatly improved the outcome of patients affected by non-small cell lung cancer (NSCLC). However, most NSCLC patients either do not respond to ICI monotherapy or develop resistance to it after an initial response. Therefore, the identification of biomarkers for predicting the response of patients to ICI monotherapy represents an urgent issue. Great efforts are currently dedicated toward identifying blood-based biomarkers to predict responses to ICI monotherapy. In this study, more commonly utilized blood-based biomarkers, such as the neutrophil-to-lymphocyte ratio (NLR) and the lung immune prognostic index (LIPI) score, as well as the frequency/number and activation status of various types of circulating innate immune cell populations, were evaluated in NSCLC patients at baseline before therapy initiation. The data indicated that, among all the parameters tested, low plasmacytoid dendritic cell (pDC), slan+-monocyte and natural killer cell counts, as well as a high LIPI score and elevated PD-L1 expression levels on type 1 conventional DCs (cDC1s), were independently correlated with a negative response to ICI therapy in NSCLC patients. The results from this study suggest that the evaluation of innate immune cell numbers and phenotypes may provide novel and promising predictive biomarkers for ICI monotherapy in NSCLC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA