RESUMO
This study investigates the role and mechanisms by which the myokine musclin promotes exercise-induced cardiac conditioning. Exercise is one of the most powerful triggers of cardiac conditioning with proven benefits for healthy and diseased hearts. There is an emerging understanding that muscles produce and secrete myokines, which mediate local and systemic "crosstalk" to promote exercise tolerance and overall health, including cardiac conditioning. The myokine musclin, highly conserved across animal species, has been shown to be upregulated in response to physical activity. However, musclin effects on exercise-induced cardiac conditioning are not established. Following completion of a treadmill exercise protocol, wild type (WT) mice and mice with disruption of the musclin-encoding gene, Ostn, had their hearts extracted and exposed to an ex vivo ischemia-reperfusion protocol or biochemical studies. Disruption of musclin signaling abolished the ability of exercise to mitigate cardiac ischemic injury. This impaired cardioprotection was associated with reduced mitochondrial content and function linked to blunted cyclic guanosine monophosphate (cGMP) signaling. Genetic deletion of musclin reduced the nuclear abundance of protein kinase G (PKGI) and cyclic adenosine monophosphate (cAMP) response element binding (CREB), resulting in suppression of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and its downstream targets in response to physical activity. Synthetic musclin peptide pharmacokinetic parameters were defined and used to calculate the infusion rate necessary to maintain its plasma level comparable to that observed after exercise. This infusion was found to reproduce the cardioprotective benefits of exercise in sedentary WT and Ostn-KO mice. Musclin is essential for exercise-induced cardiac protection. Boosting musclin signaling might serve as a novel therapeutic strategy for cardioprotection.
Assuntos
Cardiopatias , Condicionamento Físico Animal , Camundongos , Animais , Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Coração , Cardiopatias/metabolismo , Regulação da Expressão Gênica , Isquemia/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismoRESUMO
Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.
Assuntos
Corioide/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/farmacologia , Células Endoteliais/imunologia , Degeneração Macular/etiologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Corioide/irrigação sanguínea , Ativação do Complemento/fisiologia , Relação Dose-Resposta Imunológica , Feminino , Humanos , Degeneração Macular/imunologia , Degeneração Macular/patologia , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Central serous chorioretinopathy (CSC) is characterized by leakage of fluid from the choroid into the subretinal space and, consequently, loss of central vision. The disease is triggered by endogenous and exogenous corticosteroid imbalance and psychosocial stress and is much more prevalent in men. We studied the association of genetic variation in 44 genes from stress response and corticosteroid metabolism pathways with the CSC phenotype in two independent cohorts of 400 CSC cases and 1,400 matched controls. The expression of cadherin 5 (CDH5), the major cell-cell adhesion molecule in vascular endothelium, was downregulated by corticosteroids which may increase permeability of choroidal vasculature, leading to fluid leakage under the retina. We found a significant association of four common CDH5 SNPs with CSC in male patients in both cohorts. Two common intronic variants, rs7499886:A>G and rs1073584:C>T, exhibit strongly significant associations with CSC; P = 0.00012; odds ratio (OR) = 1.5; 95%CI [1.2;1.8], and P = 0.0014; OR = 0.70; 95%CI [0.57;0.87], respectively. A common haplotype was present in 25.4% male CSC cases and in 35.8% controls (P = 0.0002; OR = 0.61, 95% CI [0.47-0.79]). We propose that genetically predetermined variation in CDH5, when combined with triggering events such as corticosteroid treatment or severe hormonal imbalance, underlie a substantial proportion of CSC in the male population.
Assuntos
Corticosteroides/farmacologia , Antígenos CD/genética , Caderinas/genética , Coriorretinopatia Serosa Central/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Adolescente , Adulto , Idoso , Alelos , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Coriorretinopatia Serosa Central/metabolismo , Corioide/efeitos dos fármacos , Corioide/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Humanos , Junções Intercelulares/ultraestrutura , Desequilíbrio de Ligação , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Adulto JovemRESUMO
Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with regional phenotypes.
Assuntos
Perfilação da Expressão Gênica , Macula Lutea/metabolismo , Epitélio Pigmentado Ocular/metabolismo , RNA Mensageiro/genética , Doenças Retinianas/genética , Idoso , Idoso de 80 Anos ou mais , Corioide , Feminino , Humanos , Macula Lutea/patologia , Masculino , Epitélio Pigmentado Ocular/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologiaRESUMO
Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function.
Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Epitélio Pigmentado da Retina , Anticorpos Bloqueadores , Meios de Cultivo Condicionados , Células Endoteliais , Feminino , Gelatinases , Humanos , Metaloproteinase 2 da Matriz , Gravidez , Inibidores de Proteases , Proteínas Recombinantes , Fatores de Transcrição , Fator A de Crescimento do Endotélio VascularRESUMO
PURPOSE: Age-related macular degeneration (AMD) is a common blinding disease in the elderly population. AMD is frequently complicated by choroidal neovascularization, causing irreversible losses in visual acuity. Proteins that induce pathologic angiogenesis in other systems include angiogenin, a small protein involved in angiogenesis in tumor metastases. Our goal was to determine if angiogenin participates in angiogenesis during choroidal neovascular membrane formation in AMD. METHODS: The expression of angiogenin in the human retina and retinal pigment epithelium (RPE)-choroid was determined using reverse-transcription (RT)-PCR and immunoblotting. Localization of angiogenin in human control eyes and in eyes with choroidal neovascularization was determined using immunohistochemistry. Potential angiogenin-mediated effects on endothelial cell migration, as well as angiogenin internalization by Rf/6a cells, were determined. RESULTS: Angiogenin was synthesized by the human choroid and retina and localized to normal and pathologic vasculature. Angiogenin did not change the migratory behavior of Rf/6a chorioretinal endothelial cells; however, these cells did internalize exogenous angiogenin in culture. CONCLUSIONS: Chorioretinal endothelial cells bind and internalize angiogenin, a protein localized to the choroid in normal eyes, as well as in some drusen and in neovascular membranes in AMD eyes. Angiogenin has been shown to participate in angiogenesis in other tissues. Although angiogenin does not increase the migratory behavior of these cells, it may play a role in other aspects of endothelial cell activation in neovascular AMD.
Assuntos
Degeneração Macular/enzimologia , Ribonuclease Pancreático/metabolismo , Idoso de 80 Anos ou mais , Movimento Celular , Núcleo Celular/metabolismo , Células Cultivadas , Corioide/enzimologia , Corioide/patologia , Endocitose , Células Endoteliais/patologia , Regulação da Expressão Gênica , Humanos , Immunoblotting , Degeneração Macular/genética , Degeneração Macular/patologia , Reação em Cadeia da Polimerase , Transporte Proteico , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Ribonuclease Pancreático/genéticaRESUMO
Degenerative diseases affecting retinal photoreceptor cells have numerous etiologies and clinical presentations. We clinically and molecularly studied the retina of a 70-year-old patient with retinal degeneration attributed to autoimmune retinopathy. The patient was followed for 19 years for progressive peripheral visual field loss and pigmentary changes. Single-cell RNA sequencing was performed on foveal and peripheral retina from this patient and four control patients, and cell-specific gene expression differences were identified between healthy and degenerating retina. Distinct populations of glial cells, including astrocytes and Müller cells, were identified in the tissue from the retinal degeneration patient. The glial cell populations demonstrated an expression profile consistent with reactive gliosis. This report provides evidence that glial cells have a distinct transcriptome in the setting of human retinal degeneration and represents a complementary clinical and molecular investigation of a case of progressive retinal disease.
Assuntos
Neuroglia/metabolismo , Degeneração Retiniana/genética , Análise de Sequência de RNA/métodos , Idoso , Humanos , MasculinoRESUMO
The activity and survival of retinal photoreceptors depend on support functions performed by the retinal pigment epithelium (RPE) and on oxygen and nutrients delivered by blood vessels in the underlying choroid. By combining single-cell and bulk RNA sequencing, we categorized mouse RPE/choroid cell types and characterized the tissue-specific transcriptomic features of choroidal endothelial cells. We found that choroidal endothelium adjacent to the RPE expresses high levels of Indian Hedgehog and identified its downstream target as stromal GLI1+ mesenchymal stem cell-like cells. In vivo genetic impairment of Hedgehog signaling induced significant loss of choroidal mast cells, as well as an altered inflammatory response and exacerbated visual function defects after retinal damage. Our studies reveal the cellular and molecular landscape of adult RPE/choroid and uncover a Hedgehog-regulated choroidal immunomodulatory signaling circuit. These results open new avenues for the study and treatment of retinal vascular diseases and choroid-related inflammatory blinding disorders.
Assuntos
Corioide/imunologia , Corioide/patologia , Endotélio/imunologia , Imunomodulação , Análise de Célula Única , Animais , Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Inflamação/genética , Mastócitos/metabolismo , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
Age-related macular degeneration (AMD) is a common, blinding disease associated with increased complement system activity. Eyes with AMD show elevated accumulation of the membrane attack complex (MAC) in the choriocapillaris and degeneration of macular choriocapillaris endothelial cells (ECs). Thus, one could reasonably conclude that the endothelial cell death that occurs in AMD is due to injury by the MAC. We therefore sought to identify strategies for protecting ECs against MAC lysis. RF/6A endothelial cells were pre-incubated with a library of FDA-approved small molecules, followed by incubation with complement intact human serum quantification of cell death. Two closely related molecules identified in the screen, econazole nitrate and miconazole nitrate, were followed in validation and mechanistic studies. Both compounds reduced lysis of choroidal ECs treated with complement-intact serum, across a range of doses from 1 to 100 µM. Cell rescue was confirmed in mouse primary choroidal ECs. Both exosome release and cell surface roughness (assessed using a Holomonitor system) were reduced by drug pretreatment in RF/6A cells, whereas endosome formation increased with both drugs, consistent with imidazole-mediated alterations of cell surface dynamics. The results in the current study provide further proof of principle that small molecules can protect choroidal ECs from MAC-induced cell death and suggest that FDA approved compounds may be beneficial in reducing vascular loss and progression of AMD.
Assuntos
Corioide/metabolismo , Proteínas do Sistema Complemento/metabolismo , Células Endoteliais/metabolismo , Imidazóis , Degeneração Macular/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Corioide/patologia , Células Endoteliais/patologia , Imidazóis/química , Imidazóis/farmacologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos TransgênicosRESUMO
The purpose of this study was to determine the in vitro and ex vivo susceptibility of human corneal cells to West Nile virus (WNV) infection and evaluate the ability of the virus to disseminate to the corneas of infected mice. Human corneal epithelial cells were challenged with WNV, incubated for 1-6 days, and tested for evidence of WNV infection. Viral RNA and antigen were detected at every time point, and the virus reached a peak titer of 2.5 × 107 plaque-forming units (pfu)/mL at 3 days postinoculation (PI). Corneas procured from donors were incubated in culture dishes containing WNV for 1-5 days and tested for evidence of WNV. Viral RNA and antigen were detected, and the virus reached a mean peak titer of 4.9 × 104 pfu/mL at 5 days PI. Mice were inoculated intraperitoneally with WNV, and their eyes were harvested at 2, 5, and 8 days PI and tested for evidence of WNV. Viral RNA was detected in corneas of four of nine systemically infected mice as early as 2 days PI. We conclude that human corneal cells support WNV replication in vitro and ex vivo, and WNV may disseminate into the corneas of experimentally infected mice. These findings indicate that corneal transmission cannot be ruled out as a novel mode of human-to-human WNV transmission and additional experiments should be conducted to assess this risk further.
Assuntos
Córnea/virologia , Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Animais , Linhagem Celular , Córnea/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Viral/isolamento & purificaçãoRESUMO
PURPOSE: To investigate whether the benefit of Age-Related Eye Disease Study (AREDS) formula multivitamins and zinc in the progression of age-related macular degeneration (AMD) may occur through inhibiting inflammatory events in the choroid. METHODS: Mouse C166 endothelial cells (ECs) and, for some experiments, human retinal pigment epithelium (RPE)-choroid organ cultures were treated with AREDS multivitamin solution (MVS) or ZnCl(2). The cytotoxicity of MVS was evaluated using a lactate dehydrogenase colorimetric assay. Cell motility was assessed using a scratch assay. Macrophage adhesion to EC monolayers or ICAM-1 protein was determined after MVS and zinc treatment and with or without lipopolysaccharide (LPS). Quantitative reverse transcription PCR and Western blot analysis were used to determine the effects of MVS on the expression of proinflammatory molecules in treated and untreated cells. RESULTS: AREDS MVS and zinc did not affect C166 EC viability until the 56th hour after treatment. Scratch assays showed partial inhibition of MVS and zinc on EC migration. In cell adhesion assays, MVS and zinc decreased the number of macrophages bound to EC and to ICAM-1 protein. Quantitative PCR showed that LPS increased the expression of ICAM-1 in both C166 and human RPE-choroid cultures, which was partially offset by MVS and zinc. MVS and zinc also mitigated LPS-induced ICAM-1 protein expression on Western blot analysis. CONCLUSIONS: Treatment with AREDS MVS and zinc may affect both angiogenesis and endothelial-macrophage interactions. These results suggest that AREDS vitamins and zinc ions may slow the progression of AMD, in part through the attenuation of EC activation.
Assuntos
Corioide/efeitos dos fármacos , Suplementos Nutricionais , Degeneração Macular/tratamento farmacológico , Oligoelementos/farmacologia , Vitaminas/farmacologia , Zinco/farmacologia , Animais , Antioxidantes/farmacologia , Western Blotting , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Corioide/imunologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Complete or mosaic trisomy for all of chromosome 1q has been seen rarely in a recognized pregnancy. A patient presented with twins following in vitro fertilization (IVF). Ultrasound showed twin A to have a diaphragmatic hernia, thick nuchal fold, and subtle intracranial abnormalities. Twin B appeared normal and a thick dividing membrane was seen. Amniocentesis of twin A showed a male karyotype with mosaic trisomy 1q in 57% of cells resulting from a translocation between chromosomes Yq12 and 1q12. Parental karyotypes were normal. The twins were delivered at 33 weeks. Twin A died at 1 hr of life. Autopsy confirmed the left diaphragmatic hernia and hypoplastic lungs. Autopsy also revealed a partial cleft palate, syndactyly of the second and third toes bilaterally, external deviation of the left 5th toe, and contractures of the index fingers bilaterally. A recent report documented formation of a chimera resulting from embryo amalgamation after IVF. Given the rarity of the cytogenetic findings in our case, we sought to determine if the mosaicism was a result of chimera formation related to the IVF. Thirteen polymorphic loci throughout the genome, in addition to four on 1q and four on 1p, were amplified by PCR. Only two alleles were observed at each of these loci in twin A, one paternal and the other maternal. We present further clinical findings of this case with a rare cytogenetic abnormality that appears to have originated from a postzygotic mitotic error and not embryo amalgamation.