Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042819

RESUMO

Inspired by the intriguing adaptivity of natural life, such as squids and flowers, we propose a series of dynamic and responsive multifunctional devices based on multiscale structural design, which contain metal nanocoating layers overlaid with other micro-/nanoscale soft or rigid layers. Since the optical/photothermal properties of a metal nanocoating are thickness dependent, metal nanocoatings with different thicknesses were chosen to integrate with other structural design elements to achieve dynamic multistimuli responses. The resultant devices demonstrate 1) strain-regulated cracked and/or wrinkled topography with tunable light-scattering properties, 2) moisture/photothermal-responsive structural color coupled with wrinkled surface, and 3) mechanically controllable light-shielding properties attributed to the strain-dependent crack width of the nanocoating. These devices can adapt external stimuli, such as mechanical strain, moisture, light, and/or heat, into corresponding changes of optical signals, such as transparency, reflectance, and/or coloration. Therefore, these devices can be applied as multistimuli-responsive encryption devices, smart windows, moisture/photothermal-responsive dynamic optics, and smartphone app-assisted pressure-mapping sensors. All the devices exhibit high reversibility and rapid responsiveness. Thus, this hybrid system containing ultrathin metal nanocoatings holds a unique design flexibility and adaptivity and is promising for developing next-generation multifunctional devices with widespread application.

2.
Langmuir ; 37(25): 7760-7770, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34129778

RESUMO

Inspired by hook-and-loop fasteners, we designed a hydrogel network containing α-zirconium phosphate (ZrP) two-dimensional nanosheets with a high density of surface hydroxyl groups serving as nanopatches with numerous "hooks," while polymer chains with plentiful amine functional groups serve as "loops." Our multiscale molecular simulations confirm that both the high density of hydroxyl groups on nanosheets and the large number of amine functional groups on polymer chains are essential to achieve reversible interactions at the molecular scale, functioning as nano hook-and-loop fasteners to dissipate energy. As a result, the synthesized hydrogel possesses superior stretchability (>2100% strain), resilience to compression (>90% strain), and durability. Remarkably, the hydrogel can sustain >5000 cycles of compression with torsion in a solution mimicking synovial fluid, thus promising for potential biomedical applications such as artificial articular cartilage. This hook-and-loop model can be adopted and generalized to design a wide range of multifunctional materials with exceptional mechanical properties.


Assuntos
Hidrogéis , Polímeros , Pressão
3.
Inorg Chem ; 60(11): 8276-8284, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032408

RESUMO

The exfoliation of microcrystalline α-zirconium phosphate (α-ZrP) in an organic solvent is very difficult to achieve. Surprisingly, the addition of tetra(n-butyl)ammonium hydroxide (TBAOH) into a methanol dispersion of a nanosized α-ZrP brings about the complete exfoliation of nanosheets. To understand the mechanism, we examined the stepwise intercalation/exfoliation of the nanosized α-ZrP using TBAOH in four different solvents (water, methanol, ethanol, and butanol). Propionate groups on the edge of the nanosized α-ZrP prevent TBA cations from entering the galleries. Due to the formation of unstable solvent-intercalated α-ZrP with an increased interlayer distance in methanol and ethanol, TBA cations can overcome the steric hindrance and move into nanosheet layers to exchange with solvent molecules. However, the movability of the cations into the center of the galleries is preferred at a certain interlayer distance range, which leads to exfoliation of α-ZrP in methanol but intercalation only in ethanol. In water, in the beginning, neither intercalation nor exfoliation by TBA cations occurs. An additional amount of TBAOH causes the deformation of propionate groups and removes the barriers on the edges, followed by late intercalation and then exfoliation. On the other hand, butanol, as the solvent, is bulky and effectively limits the intercalation behavior of TBA cations. The weaker polarity of ethanol and butanol, compared with water and methanol, lowers the ion interactions in the solvent, which is another reason why they do not lead to exfoliation.

4.
Macromol Rapid Commun ; 42(1): e2000446, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108036

RESUMO

Hydrogels and polydimethylsiloxane (PDMS) are complementary to each other, since the hydrophobic PDMS provides a more stable and rigid substrate, while the water-rich hydrogel possesses remarkable hydrophilicity, biocompatibility, and similarity to biological tissues. Herein a transparent and stretchable covalently bonded PDMS-hydrogel bilayer (PHB) structure is prepared via in situ free radical copolymerization of acrylamide and allylamine-exfoliated-ZrP (AA-e-ZrP) on a functionalized PDMS surface. The AA-e-ZrP serves as cross-linking nano-patches in the polymer gel network. The covalently bonded structure is constructed through the addition reaction of vinyl groups of PDMS surface and monomers, obtaining a strong interfacial adhesion between the PDMS and the hydrogel. A mechanical-responsive wrinkle surface, which exhibs transparency change mechanochromism, is created via introducing a cross-linked polyvinyl alcohol film atop the PHB structure. A finite element model is implemented to simulate the wrinkle formation process. The implication of the present finding for the interfacial design of the PHB and PDMS-hydrogel-PVA trilayer (PHPT) structures is discussed.


Assuntos
Dimetilpolisiloxanos , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Álcool de Polivinil
5.
Mater Horiz ; 10(12): 5931-5941, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37873969

RESUMO

Deformable electroluminescent devices (DELDs) with mechanical adaptability are promising for new applications in smart soft electronics. However, current DELDs still present some limitations, including having stimuli-insensitive electroluminescence (EL), untunable mechanical properties, and a lack of versatile stimuli response properties. Herein, a facile approach for fabricating in situ interactive and multi-stimuli responsive DELDs with optical/photothermal/mechanical tunability was proposed. A polyvinyl alcohol (PVA)/polydopamine (PDA)/graphene oxide (GO) adaptable hydrogel exhibiting optical/photothermal/mechanical tunability was used as the top ionic conductor (TIC). The TIC can transform from a viscoelastic state to an elastic state via a special freezing-salting out-rehydration (FSR) process. Meanwhile, it endows the DELDs with a photothermal response and thickness-dependent light shielding properties, allowing them to dynamically demonstrate "on" or "off" or "gradually change" EL response to various mechanical/photothermal stimuli. Thereafter, the DELDs with a viscoelastic TIC can be utilized as pressure-responsive EL devices and laser-engravable EL devices. The DELDs with an elastic TIC can withstand both linear and out-of-plane deformation, enabling the designs of various interactive EL devices/sensors to monitor linear sliders, human finger bending, and pneumatically controllable bulging. This work offers new opportunities for developing next-generation EL-responsive devices with widespread application based on adaptable hydrogel systems.

6.
Chem Commun (Camb) ; 57(6): 789-792, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33355554

RESUMO

The conventional approach to exfoliate kaolinite to form aluminosilicate nanoscrolls is very time-consuming. Herein, we report a novel method to prepare aluminosilicate nanoscrolls from kaolinite by catalysis of AlCl3 under mild conditions. This method is highly efficient, environmentally friendly, and can be easily scaled up for mass production.

7.
Adv Mater ; 33(34): e2101374, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34288156

RESUMO

The organic insulator-metal interface is the most important junction in flexible electronics. The strong band offset of organic insulators over the Fermi level of electrodes should theoretically impart a sufficient impediment for charge injection known as the Schottky barrier. However, defect formation through Anderson localization due to topological disorder in polymers leads to reduced barriers and hence cumbersome devices. A facile nanocoating comprising hundreds of highly oriented organic/inorganic alternating nanolayers is self-coassembled on the surface of polymer films to revive the Schottky barrier. Carrier injection over the enhanced barrier is further shunted by anisotropic 2D conduction. This new interface engineering strategy allows a significant elevation of the operating field for organic insulators by 45% and a 7× improvement in discharge efficiency for Kapton at 150 °C. This superior 2D nanocoating thus provides a defect-tolerant approach for effective reviving of the Schottky barrier, one century after its discovery, broadly applicable for flexible electronics.

8.
ACS Appl Mater Interfaces ; 12(12): 14578-14587, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118397

RESUMO

Thermochromic films with intriguing functionalities have great potential in soft actuators, heat storage devices, and interactive interface sensors. Inspired by the unique features of bird feathers (such as Nicobar pigeon, Anna hummingbird, mandarin duck, etc.), a superhydrophobic thermochromic film (STF) with robust healability is proposed for the first time through sandwiching an electric heater between a top thermochromic layer and a bottom poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) substrate. The STF exhibits fast and reversible color conversions of blue-pink-yellow under a low input power and has a superhydrophobic property with a contact angle of 155°. Furthermore, owing to the strong dynamic dipole-dipole interactions between the polar CF3 groups of flexible PVDF-HFP chains, the STF possesses a robust healing capability of structure and conductivity. By means of the temperature difference generated by the objects contacting (finger, iron, and water) as a stimulus, the STFs achieve tactile imaging and writing record with advantages of transient display, automatic erasure, and excellent reusability. Additionally, the STF-based anti-counterfeiting security labels with superhydrophobicity and three-state color switching simultaneously realize facile distinguishment and difficult forgery. The findings conceivably stand out as a new methodology to fabricate functional thermochromic materials for innovative applications.

9.
Nat Commun ; 11(1): 5591, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154386

RESUMO

Room temperature phosphorescence materials have inspired extensive attention owing to their great potential in optical applications. However, it is hard to achieve a room temperature phosphorescence material with simultaneous long lifetime and high phosphorescence quantum efficiency. Herein, multi-confined carbon dots were designed and fabricated, enabling room temperature phosphorescence material with simultaneous ultralong lifetime, high phosphorescence quantum efficiency, and excellent stability. The multi-confinement by a highly rigid network, stable covalent bonding, and 3D spatial restriction efficiently rigidified the triplet excited states of carbon dots from non-radiative deactivation. The as-designed multi-confined carbon dots exhibit ultralong lifetime of 5.72 s, phosphorescence quantum efficiency of 26.36%, and exceptional stability against strong oxidants, acids and bases, as well as polar solvents. This work provides design principles and a universal strategy to construct metal-free room temperature phosphorescence materials with ultralong lifetime, high phosphorescence quantum efficiency, and high stability for promising applications, especially under harsh conditions.

10.
Polymers (Basel) ; 11(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30960088

RESUMO

Mechanochromic materials have recently received tremendous attention because of their potential applications in humanoid robots, smart windows, strain sensors, anti-counterfeit tags, etc. However, improvements in device design are highly desired for practical implementation in a broader working environment with a high stability. In this article, a novel and robust mechanochromism was designed and fabricated via a facile method. Silica nanoparticles (NPs) that serve as a trigger of color switch were embedded in elastomer to form a bi-layer hybrid film. Upon stretching under ambient conditions, the hybrid film can change color as well as transparency. Furthermore, it demonstrates excellent reversibility and reproducibility and is promising for widespread application.

11.
ACS Appl Mater Interfaces ; 10(4): 4305-4314, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29320155

RESUMO

Ionic liquids (ILs) are regarded as ideal components in the next generation of strain sensors because their ultralow modulus can commendably circumvent or manage the mechanical mismatch in traditional strain sensors. In addition to strain sensors, stretchable conductors with a strain-insensitive conductance are also indispensable in artificial systems for connecting and transporting electrons, similar to the function of blood vessels in the human body. In this work, two types of ILs-based conductive fibers were fabricated by developing hollow fibers with specific microscale channels, which were then filled with ILs. Typically, the ILs-based fiber with straight microchannels exhibited a high strain sensitivity and simultaneously rapid responses to strain, pressure, and temperature. The other ILs-based fiber with helical microchannels exhibited a good strain-isolate conductance under strain. Due to the high transparency of ILs along with the sealing process, the as-prepared ILs-based fibers are both highly transparent and waterproof. More importantly, owing to the low modulus of ILs and the core-shell structure, both conductive fiber prototypes demonstrated a high durability (>10 000 times) and a long-term stability (>4 months). Ultimately, the ILs-based fibrous sensors were successfully woven into gloves, flaunting the ability to detect human breathing patterns, sign language, hand gestures, and arm motions. The ILs-based strain-insensitive fibers were successfully applied in stretchable wires as well.

12.
Sci Adv ; 3(7): e1701212, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28776038

RESUMO

Large-scale biomimetic organic/inorganic hybrid nanocoatings with a nacre-like microstructure were prepared via a facile coassembly process. Different from conventional polymer nanocomposites, these nanocoatings contain a high concentration of nanosheets, which can be well aligned along the substrate surface. Moreover, the nanosheets and polymer matrix can be chemically co-cross-linked. As a result, the nanocoatings exhibit exceptional mechanical properties (high stiffness and strength), barrier properties (to both oxygen and water vapor), and flame retardancy, but they are also highly transparent (maintaining more than 85% of their original transmittance to visible light). The nanocoatings can be applied to various substrates and regular or irregular surfaces (for example, films and foams). Because of their excellent performance and high versatility, these nanocoatings are expected to find widespread application.

13.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28429495

RESUMO

The wrinkle dynamics (such as reversibility and stability) of human skin are affected by the external stimuli, as well as the skin's structure and mechanical properties. Inspired by these tunable responses, three types of moisture-responsive wrinkle dynamics are achieved, for the first time, through a single film-substrate system. These dynamics include: (1) completely reversible wrinkles formation; (2) irreversible wrinkles formation I: the initially formed wrinkles can be permanently erased and never reappear; and (3) irreversible wrinkles formation II: once the wrinkles form, they can no longer be erased. The key to success is to control the stiffness and thickness ratios of the film and the substrate, and tailor the crosslink degree/gradient of the film to allow for moisture-dependent changes of modulus and swelling degree. These unique responsive dynamics motivate the invention of a series of optical devices triggered by moisture, including anticounterfeit tabs, encryption devices, water indicators, light diffusors, and antiglare films. This study also paves the road for further understanding of the skin wrinkling dynamics and manipulation.

14.
Nat Commun ; 7: 11802, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389480

RESUMO

A number of marine organisms use muscle-controlled surface structures to achieve rapid changes in colour and transparency with outstanding reversibility. Inspired by these display tactics, we develop analogous deformation-controlled surface-engineering approaches via strain-dependent cracks and folds to realize the following four mechanochromic devices: (1) transparency change mechanochromism (TCM), (2) luminescent mechanochromism (LM), (3) colour alteration mechanochromism (CAM) and (4) encryption mechanochromism (EM). These devices are based on a simple bilayer system that exhibits a broad range of mechanochromic behaviours with high sensitivity and reversibility. The TCM device can reversibly switch between transparent and opaque states. The LM can emit intensive fluorescence as stretched with very high strain sensitivity. The CAM can turn fluorescence from green to yellow to orange as stretched within 20% strain. The EM device can reversibly reveal and conceal any desirable patterns.


Assuntos
Dispositivos Ópticos , Álcool de Polivinil/química , Silanos/química , Silicatos/química , Compostos de Vinila/química , Animais , Organismos Aquáticos/química , Organismos Aquáticos/fisiologia , Fenômenos Biomecânicos , Cor , Decapodiformes/química , Decapodiformes/fisiologia , Fluoresceína/química , Luz , Luminescência , Estresse Mecânico
15.
Nanoscale ; 7(21): 9552-7, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948156

RESUMO

In this work, we present a two-step method to controllably synthesize novel and highly efficient upconversion materials, Lu5O4F7:Er(3+),Yb(3+) nano/micro-crystals, and investigate their size/morphology induced tunable upconversion properties. In addition to the common phenomenon aroused by a surface quenching effect, direct experimental evidence for the regulation of phonon modes is obtained in nanoparticles. The findings in this work advance the existing mechanisms for the general explanation of size/morphology induced upconversion features. Because of the adjustment of phonon energy and density as well as the surface quenching effect, the biocompatible Lu5O4F7:Er(3+),Yb(3+) nanoparticles exhibit an ultra-strong single-band red upconversion, rendering them promising for biomedical applications.


Assuntos
Medições Luminescentes , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Complexos de Coordenação/química , Érbio/química , Células HeLa , Humanos , Lutécio/química , Tamanho da Partícula , Itérbio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA