RESUMO
OBJECTIVE: To investigate the metabolism and brain tissue distribution of borneol-modified tanshinone IIA liposome (BO-TA-Lip) and its effect on NF-κB and ICAM-1 in cerebral ischemia reperfusion rats, thereby exploring the ameliorative mechanism of BO-TA-Lip on ischemic encephalopathy. METHODS: Particle size, entrapment efficiency, drug loading were measured to evaluate the preparation comprehensively. Metabolism and brain tissue distributions in vivo were measured by HPLC, and the pharmacokinetic parameters were calculated. In addition, 24 SD rats were randomly divided into sham, model, STS (sodium tanshinone IIA sulfonate, 30 mg/kg) and BO-TA-Lip groups (44 mg/kg). The middle cerebral artery occlusion (MCAO) rats were constructed with thread embolism method. Neurological deficits were scored using Zea Longa scoring standard. TTC and HE staining were used for the cerebral infarction and histopathological examination, respectively. The protein expression was examined by immunohistochemistry and Western blot. RESULTS: The average particle size, encapsulation efficiency and drug loading of BO-TA-Lip were (135.33 ± 7.25) nm, (85.95 ± 3.20)% and (4.06 ± 0.31)%, respectively. Both in the pharmacokinetic analysis of plasma and brain tissue, in BO-TA-Lip group, the peak concentration and the area under the curve increased, and the clearance rate decreased. The neurological deficit scores and infarct area of the BO-TA-Lip group were significantly lower than that of the model and STS groups. Besides, BO-TA-Lip reduced the protein expression of NF-κB, ICAM-1, IL-1ß, TNF-α and IL-6 in the brain tissue. CONCLUSION: BO-TA-Lip had higher bioavailability and better absorption in brain tissue, and could improve cerebral ischemia reperfusion injury, which might be related to the inhibitory effect of BO-TA-Lip in expression of NF-κB and ICAM-1.
Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Abietanos , Animais , Isquemia Encefálica/tratamento farmacológico , Canfanos , Molécula 1 de Adesão Intercelular , Lipossomos , NF-kappa B , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológicoRESUMO
Gastric cancer (GC) is the 5th most prevalent cancer and the 4th primary cancer-associated mortality globally. As the first identified m6A demethylase for removing RNA methylation modification, fat mass and obesity-associated protein (FTO) plays instrumental roles in cancer development. Therefore, we study the biological functions and oncogenic mechanisms of FTO in GC tumorigenesis and progression. In our study, FTO expression is obviously upregulated in GC tissues and cells. The upregulation of FTO is associated with advanced nerve invasion, tumor size, and LNM, as well as the poor prognosis in GC patients, and promoted GC cell viability, colony formation, migration and invasion. Mechanistically, FTO targeted specificity protein 1 and Aurora Kinase B, resulting in the phosphorylation of ataxia telangiectasia mutated and P38 and dephosphorylation of P53. In conclusion, the m6A demethylase FTO promotes GC tumorigenesis and progression by regulating the SP1-AURKB-ATM pathway, which may highlight the potential of FTO as a diagnostic biomarker for GC patients' therapy response and prognosis.
Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proteínas Mutadas de Ataxia Telangiectasia , Aurora Quinase B , Fator de Transcrição Sp1 , Neoplasias Gástricas , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Pessoa de Meia-Idade , Transdução de Sinais , Prognóstico , Camundongos , AnimaisRESUMO
Background: Myocardial ischemia/reperfusion (MI/R) is one of the most important links in myocardial injury, causing damage to cardiac tissues including cell apoptosis, oxidative stress, and other serious consequences. Asiaticoside (AS), a new compound synthesized from genistein, is cardioprotective. This paper presents new evidence for the protective role of AS against MI/R injury in vitro and in vivo. Methods: First, BALB/c mice underwent surgical ligation of the left anterior descending (LAD) artery to establish an MI/R animal model, and HL-1 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to establish an in vitro model. Myocardial infarct size was examined by triphenyl tetrazolium chloride (TTC) staining, histopathological changes detected in heart tissues were observed using hematoxylin and eosin (H&E) and Masson staining, heart tissue apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze cardiac troponin I (CTnI), creatine kinase-muscle and brain (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and reduced glutathione (GSH). Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and live/dead assay. Cell apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential, and mitochondrial superoxide were detected by flow cytometry and fluorescence microscopy. Both the protein expression in myocardial tissues and cardiomyocytes were examined by western blot. Results: In the in vivo MI/R experiments,pretreatment of AS reduced myocardial infarct size, decrease leakage of myocardial enzyme, suppressed myocardial apoptosis, myocardial collagen deposition, and oxidative stress. In the in vitro OGD/R experiments, HL-1 cells pretreated with AS had increased cell viability, decreased apoptosis rates and depolarization of mitochondrial membrane potential, and attenuated intracellular ROS and mitochondrial superoxide. Moreover, AS downregulated the expression of apoptotic protein, and promoted phosphorylation of PI3K, AKT, and GSK3ß, which was reversed by PI3K inhibitor LY294002. Conclusions: The AS compound protects against MI/R injury by attenuating oxidative stress and apoptosis via activating the PI3K/AKT/GSK3ß pathway in vivo and vitro.
RESUMO
BACKGROUND: Myocardial infarction (MI) has a high mortality and disability rate and greatly affects human health. This study sought to explore the therapeutic effect and molecular mechanism of 3'-daidzein sulfonate (DSS) on MI. METHODS: A rat MI model was established and low and high doses of DSS were administered to the rats. An in vitro oxygen glucose deprivation model was used to verify the treatment role and mechanism of DSS. The establishment of the rat MI model was confirmed by electrocardiogram. The tissue changes were detected by HE, Masson's trichrome, TUNEL and TTC staining. Cell viability was detected by CCK-8. The viable and dead cells were detected by Calcein-AM/PI. Apoptotic cells, ROS and JC-1 were detected by flow cytometry apoptosis. The level of proteins was detected by western blotting. MDA, SOD and GSH were detected by ELISA. RESULTS: The results of Hematoxylin and eosin, TUNEL, and Masson staining showed that the myocardial tissue of the MI group was repaired by DSS. The serum levels of cardiac troponin I (CTnI), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and malondialdehyde (MDA) were decreased by DSS, while the serum levels of superoxide dismutase and glutathione were promoted by DSS. The treatment of DSS activated the Nuclear Factor Erythroid 2-Related Factor 2 (NRF-2)/Heme Oxygenase 1 (HO-1) pathway and inhibited the caspase-3 apoptosis pathway. The in vitro experiment showed that DSS greatly restored cell viability and reduced cell apoptosis. DSS also greatly inhibited mitochondrial membrane potential depolarization, reactive oxygen species production, and oxidative stress. The application of the NRF-2 inhibitor, C29H25N3O4S (ML385), greatly inhibited the treatment role of DSS and the NRF-2/HO-1 pathway, and activated the caspase-3 apoptosis pathway. CONCLUSIONS: In conclusion, this study first identified the beneficial role of DSS in MI. DSS protected myocardial cells by activating the NRF-2/HO-1 pathway and inhibiting cell apoptosis. DSS could be used as a novel drug in the treatment of MI.
RESUMO
BACKGROUND: Hypoxia is an important cause of myocardial injury due to the heart's high susceptibility to hypoxia. Astragaloside IV (AS-IV) is the main component of Astragalus membranaceus and could exert cardiac protective role. Here, the effect of AS-IV on hypoxia-injured H9c2 cardiomyocytes was elucidated. METHODS: First, H9c2 cells were exposed to hypoxia and/or AS-IV treatment. Cell apoptosis, death, and viability as well as hypoxia-inducible factor 1α (HIF-1α) expression and apoptotic proteins were analyzed. Next, transfection of si-HIF-1α into H9c2 cells was carried out to test whether upregulation and stabilization of HIF-1α influences the effect of AS-IV on hypoxia-treated H9c2 cells. Furthermore, the regulatory role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling on HIF-1α levels was examined. RESULTS: Hypoxia suppressed viability and promoted the apoptosis and death of H9c2 cells. AS-IV eliminated hypoxia-induced H9c2 injury. Moreover, HIF-1α signaling was further activated and stabilized by AS-IV in hypoxia-challenged H9c2 cells. Downregulation of HIF-1α suppressed the function of AS-IV in hypoxia-challenged H9c2 cells. AS-IV promoted JAK2/STAT3 signaling in hypoxia-induced injury. The beneficial functions of AS-IV in hypoxia-exposed H9c2 cells were linked to HIF-1α upregulation and JAK2/STAT3 signaling activation. CONCLUSIONS: AS-IV relieved H9c2 cardiomyocyte injury after hypoxia, possibly by activating JAK2/STAT3-mediated HIF-1α signaling.
RESUMO
Chemotherapeutic insensitivity is a major obstacle for effective treatment of hepatocellular carcinoma (HCC). Recently, new evidence showed that microRNAs (miRNAs) are closely related to drug sensitivity. This study aimed to investigate the relationship between miR-138 expression and cisplatin sensitivity of HCC cells by regulation of EZH2. CCK-8, EdU, and western blotting are determining the cell viability, proliferation, EZH2, and EMT-related protein expression. It was found that compared with normal samples, miR-138 expression was lower in cancer tissue; it was also downregulated in HCC cells. Transfected with miR-138 mimic increased sensitivity of HCC cells to cisplatin. Mechanistically, Luciferase Reporter analysis verified the interaction between miR-138 and target gene EZH2. Inhibition of EZH2 enhanced cisplatin sensitivity and transfection with EZH2 mimic mirrored the function of miR-138 in cisplatin sensitivity. Furthermore, the role of miR-138 on reversed cisplatin-induced epithelial-mesenchymal transition (EMT) was attenuated when combined with EZH2 plasmid. In conclusion, all data from this study illustrate that miR-138 may as a tumor suppressor provides a potential treatment method to treating HCC.